
European Research
7th Framework Programme

Project title: Community Networks Testbed for the Future Internet.

Tools for experimental research (Year 2)

Deliverable number: D.4.8



Project Acronym: CONFINE
Project Full Title: Community Networks Testbed for the Future Internet.
Type of contract: Large-scale integrating project (IP)
contract No: 288535
Project URL: http://confine-project.eu

Editor: Bart Braem, iMinds
Deliverable nature: Report (R)
Dissemination level: Public (PU)
Contractual Delivery Date: 20/09/2013
Actual Delivery Date TODO
Suggested Readers: Project partners, future open call partners
Number of pages: 29
Keywords: WP4, testbed design, requirement analysis, experimental research,

community networks, testbed
Authors: Bart Braem, iMinds

Michael Voorhaen, iMinds
Christoph Barz, Fraunhofer FKIE
Fatih Abut, Fraunhofer FKIE
Henning Rogge, Fraunhofer FKIE
Felix Freitag, UPC
Roger Baig Viñas, Guifi

Peer review: Ester Lopez, UPC
Blaine Tatum, OPLAN

Abstract

This deliverable gives an overview of the different tools used and made available for experimental
research by the CONFINE project consortium, consisting of three parts: open data, benchmarking
and best practices.
The chapter on open data introduces the general concept of open data and applies this to the CONFINE
project. Next, tools to generate and handle open data are introduced, followed by a description of
open data sets made public during year 2 of the project. Chapter two introduces and describes a
benchmarking framework. While this is still work in progress, already the proposed approach is given.
Finally, the last chapter documents best practices for the community-lab testbed. A best practice to
handle network simulation in an emulated testbed is introduced, followed by good practices from the
open call partners.

http://confine-project.eu


Contents

1. Open Data 4
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. CONFINE Open Data Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2. Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. A Community Network Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3. Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4. Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.5. Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.6. Result Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.7. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Open Data Anonymization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1. pycryptopan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. Community Network Open Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1. Funkfeuer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1.1. Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1.2. Traceroute statistics . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1.3. Ping statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2. Guifi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2.1. Guifi.net Database . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2.2. Guifi Proxy Logs . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.3. AWMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6. DLEP-Based Open Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1. Introduction to DLEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2. Architecture for Open Data Set Collection . . . . . . . . . . . . . . . . . . . 14

2. Development of benchmarking framework 16
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3. Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1. Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3. Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5. Application to Community-Lab . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Documentation of best practices 21
3.1. Experimentally driven research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



Contents Contents

3.2. Link Error Model for VCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A. Appendix: Experiment Experience 24
A.1. Open Source P2P Streaming for Community Networks . . . . . . . . . . . . . . . . 24

A.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.1.2. Experiences and Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2. Anonymous communication with unobservability . . . . . . . . . . . . . . . . . . . 25
A.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2.2. Experiences and steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.3. Exploitation of information Centric network . . . . . . . . . . . . . . . . . . . . . . . 25
A.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.3.2. Experiences and steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.4. Wi-Fi network Infrastructure eXtension (WiFIX) . . . . . . . . . . . . . . . . . . . 26
A.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.4.2. Experiences and steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.5. Confidentiality in the open CONFINE world . . . . . . . . . . . . . . . . . . . . . . 26
A.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.5.2. Experiences and steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.6. Clouds in Community Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.6.2. Experiences and steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B. Conclusions 28

2
Deliverable D.4.8



List of Figures

1.1. Grouping scenario, dotted lines show neighbor discovery. . . . . . . . . . . . . . . . 7
1.2. Our current graph visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Architecture overview of DLEP for a radio router communication . . . . . . . . . . 13
1.4. Open dataset collection architecture based on DLEP and OMF . . . . . . . . . . . . 14

2.1. High level elements in the framework and their relationships. . . . . . . . . . . . . . 18

3.1. Connection of virtual machines with central bridge for link error model. . . . . . . . 22

3



1. Open Data

This chapter will introduce open data and a strategy followed by the CONFINE project. Next, three
methods to generate open data in the CONFINE project will be presented: a tool to map existing com-
munity networks, open data sets generated from systems within existing community networks, and
finally a tool to generate open data from community-lab experiments based on the DLEP integration.

1.1. Introduction

Open data is described on Wikipedia as “the idea that certain data should be freely available to
everyone to use and republish as they wish, without restrictions from copyright, patents or other
mechanisms of control”. In the scope of CONFINE, we consider open data to be data from the project
which is freely and easily available to everyone interested[1]. To this end, the project wants to make
it straightforward to obtain, interpret and analyze the data resulting from project efforts as well as
project partners.
As a motivation for generating open data, the project would like to refer to open data in its more
frequently used government context. Governments and organizations around the world are starting
to publish data on policy, resulting in troves of information freely available to developers and users
around the world. Famous examples include Data.Gov[2], the European Union Open Data Portal[3]
and the World DataBank[4]. Further, research initiatives, such as the measurement lab[5] have begun
to release their research data using open data standards. A good starting point for more information
on open data around the world is the website of the Open Knowledge Foundation[6], which also
publishes lists of data sets and courses on handling open data.
In the scope of CONFINE, open data should be considered as data generated, both from experiments
and from the community networks. This closely corresponds to the position of CONFINE in the
Future Internet Research and Experimentation Initiative (FIRE): the project performs experiments,
and, as such, studies the feasibility of Community Networks as a future internet. The open data
from the project will include information from both the experiments themselves and all partnering
community network.

1.2. CONFINE Open Data Strategy

The project has outlined a strategy to generate, handle and offer open data, which we will introduce
in this section.

1.2.1. Storage

The storage of the open data is also inside or very nearby the source of the data. In the case of
community network data, this means the networks themselves host the data1. This gives greater
sustainability, and simplifies communicating with interested external parties.

1This is not yet the case for AWMN, but this is something which we plan to actively work on in the coming months.

4



1. Open Data 1.3. A Community Network Mapper

To simplify obtaining the data, the project has set up http://opendata.confine-project.eu/
using the Comprehensive Knowledge Archive Network (CKAN)[7] software. This central catalog
points to open data available from the different CONFINE partners. With CKAN, the datasets can
be easily tagged and commented on. The project also wants to make sure all data can be easily
downloaded in a single step. E.g., we want to avoid requiring separate downloads of weekly data
sets. To this end, some of the data set generators are modified to generate larger sets. This is still a
work in progress, and will probably continue to be an effort during the project.
To simplify interpreting data, the project wants to add a description and explanation to each dataset
available in the data catalog. This will require documenting the different fields of each data set, which
we hope will result in more usage of the data as it avoids costly and tedious deciphering of the data
formats. Finally, to simplify analysis of the data, the project will point to existing usage of the data
sets. By handing examples to the potential users of the open data sets, the barrier to usage can be
lowered.

1.2.2. Licensing

A final step in offering data involves taking care of the licensing. While there are numerous solutions,
including using no licensing at all, the project has decided to use the Open Data Commons Open
Database License (ODbL)[8]. This gives a large freedom to the users of the data, as long as attribu-
tion, share-alike and keep open are respected. For more information on this license, we would like to
refer to the excellent Open Data Commons website[9].

1.3. A Community Network Mapper

This section gives a rough description of the current work on a community networks information
retrieval system called community network mapper. The first results of this implementation have
been submitted as a paper, which at the time of writing this deliverable was still under review. As a
consequence, this section will not go into details. Future deliverables will go into further detail.

1.3.1. Goal

The development of a community network mapper is motivated by a number of goals. The first and
foremost is to lower the burden of documenting a network in a node database. Especially when the
community network is altered, e.g. moving a node or upgrading its hardware, manually updating the
node database is often neglected.
A mapping system that runs at fixed intervals, e.g. daily, can also provide feedback on and document
the dynamics of a community network. As a simple example, the growth figures from Guifi.net[10]
show how the community network increased during its lifetime. With more data available, e.g. the
geographical data of new nodes or the resulting changes in the routing protocols, researchers will be
able to study the dynamics of a network. And this could also help community networks to understand
how other networks grow and possibly learn from it. Again, this forms interesting feedback to the
deployment of community networks as a future internet.
The data generated by a mapper can also be fed into systems that can monitor the community network
and provide feedback to the community network. Section 1.3.7 provides results obtained by analyzing
the results of our community network mapper.

Deliverable D.4.8
5



1.3. A Community Network Mapper 1. Open Data

1.3.2. Approach

In what follows, the implementation of the community network mapper is outlined. It is based on
SNMP and the RouterOS API for data retrieval and plain text storage. The mapper consists of four
phases: discovery, data extraction, grouping and result generation.

1.3.3. Discovery

During the first phase, discovery, the mapper tries to discover all devices by their IP address. To
achieve this, a starting IP address has to be configured. Starting from this device, a breadth first
search algorithm is run. It is based on the neighbors of a device, as exposed by its neighbor discovery
protocol. This can be the set of OLSR neighbors[11], IP addresses discovered by the Cisco Discov-
ery Protocol (CDP)[12] or IP addresses discovered by the MikroTik Neighbor Discovery Protocol
(MNDP)[13]. After a number of iterations this results in a stable set of discovered IP addresses.

It is important to take care of devices with multiple IP addresses during this phase, because a device
can be discovered over multiple addresses. In our implementation, upon discovery we add all IP
addresses of a device to the list of discovered network IP addresses. Grouping together all IP addresses
from all devices in a node will be performed during the Grouping phase.

1.3.4. Extraction

At the end of the first phase, the discovery phase, all IP addresses in the network are available.

In the second phase, extraction, data is extracted from the discovered devices. The data to extract
depends on the interests of the community network and/or the researchers operating the mapper.
However, in the next phase of our implementation, the interface table and the ARP table are required.
More data can be fetched with additional scripts, using SNMP and/or the RouterOS API to query the
devices.

1.3.5. Grouping

To group nodes, we want to identify devices in a single location. We assume that devices connected
via a wire belong to a single node, and that devices connected over a wireless connection belong
to a different node. This assumption holds in the studied community network Wireless Antwerpen.
However, this assumption has to be improved for community networks like Guifi.net who roll their
own fiber. One could argue that the interface type interface type (Ethernet, IEEE 802.11, virtual
interfaces, . . .) will simply identify wired connections. However, this information is not available
directly nor consistently over SNMP. The authors did not want to use proprietary APIs, to maintain
general applicability.

The main complexity for grouping can be observed in figure 1.1, depicting two nodes. From a device
point of view, two MikroTik routers are connected over two Ubiquiti antennas. As mentioned before,
the Ubiquiti devices do not expose any IP information over SNMP, and have to be discovered via the
MikroTik routers. The MikroTik routers discover each other and the Ubiquiti devices via MNDP, as
depicted by the dotted line. However, they do not discover any hop count information because the
Ubiquiti routers form a layer 2 link. In this case grouping can be considered determining a reduction
from six (discovered) neighbor edges to two wired and one wireless connection.

6
Deliverable D.4.8



1. Open Data 1.3. A Community Network Mapper

802.11

802.3
802.3

MikroTik router MikroTik router

Ubiquiti Antenna Ubiquiti Antenna

Node 1 Node 2

Figure 1.1: Grouping scenario, dotted lines show neighbor discovery.

Finally, we identified wireless connections between grouped nodes. The main challenge in this case
comes from the fact that wireless connections are usually handled by devices that act like ISO layer
two bridges rather than ISO layer three routers. As such, the devices are not visible at IP level in the
data of the access point they are connected to. Identifying these connections can be solved by SNMP,
because both the BSSID a node is connected to and the BSSID of the access point are exposed.
Combined, we can easily match access points clients with their access point, as outlined in the second
part of listing 1.1.

Listing 1.1: Grouping Discovered Results
Funct ion Group ( d i s c o v e r e d d e v i c e s )

For each d i s c o v e r e d d e v i c e i (∗ Group wired l i n k s ∗ )
w i r e d l i n k s ( i ) := n e i g h b o r s ( i ) i n t e r s e c t ( s p e c i f i c r o u t e s ( i ) un ion a r p t a b l e (

i ) )
End
SSIDs = t h e SSIDs of a l l d i s c o v e r e d d e v i c e s
For each d i s c o v e r e d d e v i c e i (∗ Group w i r e l e s s l i n k s ∗ )

I f ( SSID of i i s known and SSID of i i s in SSIDs )

Deliverable D.4.8
7



1.3. A Community Network Mapper 1. Open Data

w i r e l e s s l i n k s ( i ) := SSID of i
End

End
End

1.3.6. Result Generation

After discovery, data extraction and grouping, the final phase of the community network mapper is
result generation. To match the grouping information and the topology data, as generated by the
community network mapper, we have decided to output our result in the form of a Graph Exchange
XML Format (GEXF) graph[14], annotated with the extracted node and link properties. This XML
format allows for easy manipulation in different systems, while being very extensible.
The pseudo code in listing 1.2 describes the discovery and extraction phases of our community net-
work mapper, and refers to the grouping phase shown before.

Listing 1.2: Community Network Mapper: discovery, extraction and grouping phases

Funct ion E x t r a c t ( d d a t a )
(∗ E x t r a c t da ta o f d e v i c e d over SNMP or some o t h e r API ∗ )
Funct ion Symlink ( d d a t a , e d a t a )
(∗ Cr ea t e s y m b o l i c l i n k from da ta f i l e ( s ) o f d e v i c e d t o da ta f i l e ( s ) o f d e v i c e

e ∗ )
d i s c o v e r e d := { s t a r t i n g d e v i c e } (∗ d i s c o v e r e d d e v i c e s ( IP a d d r e s s e s grouped by

d e v i c e ) ∗ )
p r e v i o u s := {} (∗ p r e v i o u s l y d i s c o v e r e d d e v i c e s ∗ )
While ( d i s c o v e r e d != p r e v i o u s )

For each i in d i s c o v e r e d and not in p r e v i o u s
E x t r a c t ( i d a t a )
E x t r a c t ( i i n t e r f a c e s )
E x t r a c t ( i n e i g h b o r s )
For each j in i i n t e r f a c e s

Symlink ( i d a t a , j d a t a )
Symlink ( i i n t e r f a c e s , j i n t e r f a c e s )
Symlink ( i n e i g h b o r s , j n e i g h b o r s )

End
End
p r e v i o u s += d i s c o v e r e d
For each i in d i s c o v e r e d

d i s c o v e r e d += i i n t e r f a c e s + i n e i g h b o u r s
End

End
Group ( d i s c o v e r e d )

1.3.7. Results

Currently, we have a working Community Network Mapper which runs three times per day on the
Wireless Antwerpen community network. Figure 1.2 gives the current resulting network graph, after
node grouping. A number of unconnected nodes can be observed, because the grouping is not op-
timal at this moment. On average, one entire run takes about three hours to discover about 3000 IP
addresses. This can vary depending on the performance of SNMP on the devices and the load on the
host system while grouping.

8
Deliverable D.4.8



1. Open Data 1.4. Open Data Anonymization

Figure 1.2: Our current graph visualized.

A first lesson learned comes with this result: developing a community network mapper proved to be
a difficult task. Tweaking the system to be faster or to include new grouping approaches takes time.
Generating and processing all data multiple times can be very demanding for the hardware.
We also noticed a strong need for documentation in community networks, to collect information on
which hardware and which software is deployed where in the large network. We hope this can help
leverage the cost of documenting. In our tests with Wireless Antwerpen, the differences between our
mapped network data and the contents of the node database became clear very quickly. The difference
usually originates from the strong growth of this community network. Documenting networks of this
scale is hard and as such we believe this work will help community networks.
This is exactly where a community network mapper should become the complementary live docu-
mentation of the community network. We would like to take this concept even further in the future,
and want to advocate for node databases to contain both static and dynamic information. In these
hybrid node databases, at fixed intervals the dynamic information is fed back into and compared to
the static documentation.
Another interesting result from our Community Network Mapper is the feedback we can provide
to the community network. By documenting the live network situation, we can more quickly give
feedback on a number of aspects and also use this data. As a nice example, we have been able to
generate a list of duplicate IP addresses present in the community network. The community network
has been able to verify and correct these problems, which also strengthens our faith in this stage of
our development.
A final lesson learned considers the data access, or to be more exact the API. From our work, we
believe it will become more important to ask device vendors to enable data access, e.g. via SNMP. As
community networks become larger, using a standardized API like SNMP should become the standard
way of handling device data. Proprietary interfaces and incomplete SNMP data complicate network
maintenance. However, vendors keep resorting to proprietary APIs which have less tool support and
are even more subject to change.

1.4. Open Data Anonymization

An important aspect of open data in the context of networking is anonymization. When the data
exposed includes information, not only about the network topology and its dynamics, but also about
the traffic flowing between the nodes in the network, anonymization of the data transfered and the end
points addresses is essential.
In the following subsections, an anonymization approach used in FunkFeuer is outlined.

1.4.1. pycryptopan

CryptoPAn[15] is a well developed and described anonymization algorithm for IPv4 addresses. After
anonymization ip addresses retain their network characteristics (e.g. IP addresses that were in one net-
work before, will be in the same network after anonymization). To better integrate this anonymization
protocol in existing collection tools, a python implementation of the CryptoPAn algoritm was written
by FunkFeuer. It was published both on github[16] and the python package index[17].

Deliverable D.4.8
9



1.5. Community Network Open Data 1. Open Data

This code will further be used to anonymize the FunkFeuer data described in subsection 1.5.1.

1.5. Community Network Open Data

Section 1.3 describes data being generated actively by research tools. However, most community
networks already collect a considerable amount of data about their own network. All community
network partners in the CONFINE project, following the open data initiative, have agreed to openly
offer part of this data within the context of the project. In the following subsections, the data generated
by each community network and its characteristics is detailed.

1.5.1. Funkfeuer

The FunkFeuer network started to collect statistics and data on their network at
http://stats.funkfeuer.at. The site contains multiple data sets all openly licensed.

1.5.1.1. Topology

FunkFeuer is the only community network partner running solely on OLSR as a routing protocol, this
allows export the network topology and further statistics as seen by specific nodes in the network.
The statistics site also shows a force-directed graph layout of the current topology as an example on
how to use the data.

1.5.1.2. Traceroute statistics

Routing in the network is done via OLSR, since the topology will not always reflect current routing
decisions, regular traceroutes are run across the network to describe routing information. Comparing
this information with the toplology data mentioned above can give insights in how to improve mesh-
routing in real-world networks.

1.5.1.3. Ping statistics

Using ping statistics, the FunkFeuer network traces the availability of various nodes. These statistics
can help to gauge expected quality of service for end-users in such a network.

1.5.2. Guifi

1.5.2.1. Guifi.net Database

At network description level, all the guifi.net network information is stored in a database. This
data is made public using the Community Network Mark Up Language (CNML). For the nodes,
the CNML is obtained inserting “/cnml” in the URL after “/guifi”, and “/node” at the end (i.e.
http://www.guifi.net/ca/node/17600 → http://www.guifi.net/ca/guifi/
cnml/17600/node). The zones (groups of nodes or other zones) are also described using
CNML. In this case the options are “/zones”, for the description of its subzones, “/nodes”, for
the nodes of the zone, and “/details”, for the complete description including devices and their
NICs. This information is used by the guifi.net website to perform multiple statistics (http:

10
Deliverable D.4.8

http://www.guifi.net/ca/node/17600
http://www.guifi.net/ca/guifi/cnml/17600/node
http://www.guifi.net/ca/guifi/cnml/17600/node
http://www.guifi.net/ca/guifi/menu/stats/nodes
http://www.guifi.net/ca/guifi/menu/stats/nodes


1. Open Data 1.5. Community Network Open Data

//www.guifi.net/ca/guifi/menu/stats/nodes) and dynamic representations (http:
//www.guifi.net/ca/guifi/menu/stats/growthmap).
The network operation information is mainly collected by the graph servers via SNMP by periodically
querying their associated devices (each network device is associated to one graph server). Addition-
ally the graph servers also perform availability (ping) tests. All this data is made available publicly
(daily, monthly, yearly) using RRD. For instance, the guifi.net website itself uses this information to
populate the nodes, zones, etc. pages (http://www.guifi.net/ca/elserrat).
The openness of the network information (specially the presented by the CNML) is essential in a
community network because it is the information that allows the understanding and the expansion of
the network. Although the guifi.net database has not been yet licensed (it is expected to be licensed
soon under the ODbL) de default license of the guifi.net website is CC by NC-SA, and thus, the
database can also be considered already implicitly open.

1.5.2.2. Guifi Proxy Logs

In guifi.net, the access to the web is a service available to all participants through most of the internet
gateways (mostly ADSL). Proxy technology has become the standard way to make the web service
available, for a number of reasons. Due to technical reasons: in guifi.net there are no default routes to
the internet and there is uplink scarcity. Proxy technology is also used because of certain restrictions
of some of the providers of this service, i.e. public administrations and public services such as libraries
and schools. They often require identification with user name or authentication with a password.
For the identification/authentication the guifi.net community has developed a proxy federation system
which allows access to all federated proxies (over 300) with the same user name and password pair.
The proxy service (Squid) as well as the federation tool are part of the guifi.net GNU/Linux distribu-
tion (guinux), the distribution used to set up almost all the guifi.net servers. (The servers, as well as
the rest of the infrastructure, are set up and maintained by community members.)
As part of the efforts of guifi.net to make resources available to the research community, during
the second year of CONFINE, the logs of several servers have been made available under certain
conditions. The servers have been chosen to be as much as representative as possible in terms of
population (villages, towns, cities) and usage (heavy, medium, light).
The restrictions, aimed at keeping the privacy of the users are the following:
• Access to the data sets:

– just for research purposes.
– accessible with username/password (HTTPS).

• Anonymization
– the anonymization is done adding strings and hashing. The correspondence between the

source string and the resulting hash is kept.
– user names are always anonymised
– either connection source information or connection destination information (i.e. IPs and

ports) is always anonymised. This anonymisation is done according to the parity of the
date of the log.

The main characteristics of the data currently available are:
• Total servers: 8
• (guifi.net) proxies IDs: 10473, 18202, 33596, 5126, 57064, 5735, 7652, 8258

Deliverable D.4.8
11

http://www.guifi.net/ca/guifi/menu/stats/nodes
http://www.guifi.net/ca/guifi/menu/stats/nodes
http://www.guifi.net/ca/guifi/menu/stats/growthmap
http://www.guifi.net/ca/guifi/menu/stats/growthmap
http://www.guifi.net/ca/elserrat


1.6. DLEP-Based Open Data Collection 1. Open Data

• log format: Squid default
• Number of log lines per day: several millions
• Number of GB of data served by the proxies per day: several GB

The logs of the proxies are centrally stored in a server in the UPC Lab, only available to selected
researchers.

1.5.3. AWMN

Aligned with the strategy outlined under “Cross-layer analysis of community networks” in deliver-
able D4.2, the Athens Wireless Metropolitan Network has made BGP data available as open data, at
http://opendata-awmn.confine-project.eu/. This data is currently hosted at a virtual
machine server at iMinds, because of uplink constraints. The data sets are comprised of RIB and up-
date messages, logged every 15 minutes on a Quagga BGP daemon running in the AWMN network.
Software from iMinds fetches this data and makes it publicly available.
Two goals motivated the publishing of this data. First, to allow external researchers to investigate
different BGP data than the regular internet BGP dumps available at e.g. RIPE RIS[18]. Second,
because both iMinds and AWMN are interested in performing research of this BGP data, and want to
publish the data sets used in the research. This will allow others researchers to verify the performed
studies and potentially extend them.

1.6. DLEP-Based Open Data Collection

During the CONFINE project, open data sets will be collected using the Data Link Exchange Pro-
tocol (DLEP) and provided to external researchers. This section firstly gives a brief introduction to
DLEP and then discusses the proposed DLEP-based open data set collection architecture that uses the
cOntrol and Management Framework (OMF) as the experiment controlling software.

1.6.1. Introduction to DLEP

DLEP is a proposed IETF standard for protocol for radio-router communication. The intention is to
be able to transport information such as layer 1/2 information from a radio to a router, e.g. over a
standard Ethernet link. Depending on the final feature-set the router might even be able to configure
certain settings of the radio.
The CONFINE prototype implementation of DLEP based is modular and consists of the following
components: dlep-app, nl80211listener plug-in, service plug-in, client plug-in and layer2viewer plug-
in (Figure 1.3). At the moment, it is not compliant to the current draft version of DLEP but will be
modified accordingly as soon as the protocol definition gets to a mature state.
The dlep-app is the daemon itself and can be seen as the core application. It comes with relatively
few functionalities on it’s own. Most functionalities are implemented by plug-ins. DLEP plug-ins
can be categorized in two groups: data provider plug-ins and data consumer plug-ins. Data provider
plug-ins gather the data from any kind of source and put them into the database while data consumer
plug-ins take the data from the database and process/forwards them.
The nl80211listener is a data provider plug-in and uses a Linux netlink socket to query the layer 2
informations from a WIFI card in a regular time interval and store them into a local database. In this
local database filled by nl80211listener plug-in, both layer 2 network data (information concerning the

12
Deliverable D.4.8

http://opendata-awmn.confine-project.eu/


1. Open Data 1.6. DLEP-Based Open Data Collection

Figure 1.3: Architecture overview of DLEP for a radio router communication

whole layer 2 network) and neighbour data (information concerning the link to a specific neighbour)
are stored. Each layer-2 network data set (one for every radio attached) is identified by a MAC address
of the radio. For each of the networks, the database stores whether it is active or not. The data entries
are automatically set to inactive if the validity time or the information has expired without an update.
The optional data fields for layer-2 networks are currently

• SSID: Identification of the network
• Last Seen: Number of milliseconds since the network was active the last time
• Frequency: Frequency of the network in Hz
• Supported Rates: Array of supported data rates in bit/s

The layer-2 link data is identified both by the radio MAC and the MAC of the link partner. The
database stores if the neighbour is active, similarly to the layer-2 network data. The optional data
fields for layer-2 neighbours are currently
• Signal: Last measured signal strength of the neighbour in dBm
• Last seen: Number of milliseconds since the neighbour was active the last time
• Tx/Rx bit rate: Current transmission/reception unicast bit rate in bit/s
• Tx/Rx packets: Number of packets sent/received with this neighbour
• Tx/Rx bytes: Number of bytes sent/received with this neighbour
• Tx retries: Number of link layer retransmissions with this neighbour
• Tx failed: Number of failed transmissions with this neighbour

The service is a data consumer plug-in and read these informations from the local database to send
them to interested entities. Normally this function is performed using a link-local multicast. The
functionalities of the nl80211listener and the service plug-ins implement the functionality of a DLEP-
capable radio.
The client is an another data provider plug-in running on the router. It is capable of receiving the
data transmitted from the radios. This data may be used by external (e.g. routing) applications, using
the related API accordingly. Another possibility to access the data is to connect a plaintext TCP

Deliverable D.4.8
13



1.6. DLEP-Based Open Data Collection 1. Open Data

Figure 1.4: Open dataset collection architecture based on DLEP and OMF

connection to the dlep-app (i.e. a telnet interface). In this case, the layer2viewer is used as a data
consumer plug-in to provide the information on the status port.

1.6.2. Architecture for Open Data Set Collection

DLEP is combined with OMF to provide a dataset collection architecture for physical and link layer
data extracted from users real network traffic. In this setup, DLEP is used as the data collection
software while OMF is required to start, control and stop the DLEP experiments and to retrieve
the measurement data. At large, the architecture for open data set collection shown in Figure 1.4
corresponds to the DLEP architecture described in the previous section. However, in this case, the
radio and router nodes from Figure 1.3 corresponds to the CONFINE community and research devices
respectively. Analogously, two DLEP core applications (dlepapp) are started at the community and
research devices. Based on the type of the device, different plug-ins are loaded into these applications.
On the community device, the 80211listener and service plug-ins are loaded. The former collects
layer 2 information from a WIFI card and writes them into a local database. The latter reads the
informations from there and sends them to interested entities over a UDP connection per multicast.
On the research device, one separate sliver is created which is only used by DLEP for dataset collec-
tion purposes. On this sliver, the client plug-in is loaded. This plug-in is responsible to receive the
UDP stream sent by the service plug-in on the community device and store the informations in its
local database. In other words, the service plug-in on the community device and the client-plug-in on
the sliver of the research device are used to replicate the layer 2 databases between the two nodes.
The collected layer 2 informations on the sliver are further forwarded to the central open dataset
collection database in which measurements from all existing research devices of the FKIE testbed
are stored. To this end, we have provided a further plug-in, called OMF Export, that transports the
replicated database informations from the slivers on the research devices to this central open dataset
collection database that is created on the OMF server.
A DLEP-based data collection session can be considered as a single experiment which is defined as
a customizable time interval in which layer 2 informations from a WIFI interface on a community
device are collected. To enable a systematic data collection, OMF is used as the experiment con-
trolling software. More specifically, OMF triggers every customizable time interval (e.g. every day)

14
Deliverable D.4.8



1. Open Data 1.6. DLEP-Based Open Data Collection

a DLEP experiment. In doing so, tables containing the collected data sets are created in the open
dataset collection database in every pre-defined time interval which then can be provided to external
researchers. The automatic start of the DLEP-experiments via OMF can be triggered, e.g., using the
Linux cron jobs mechanism.
It should be noted that the collection of datasets from the community network can cause privacy issues
as the captured data is extracted from real users network traffic. MAC addresses are typically bound
to hardware devices which could allow gathering movement profiles of network users if multiple data
collectors are present in the network. Thus additional anonymization services should be applied on
the collected data.
Using OMF as the experiment controller, DLEP can also be used to validate the accuracy of active
measurement tools to be evaluated. More specifically, assuming that DLEP is able to obtain the
same metric as the active tool under test it can provide reference values with which estimates of the
active tool are compared together to give an indication about their consistency and accuracy level.
As described in the previous section, DLEP provides a variety of different physical and link layer
informations. To produce these informations, the DLEP application requires network data which is
collected and delivered by the 802.11listener plug-in. The key rationale here is that the artificial prob-
ing traffic of the active tool under test can be simultaneously used as the passive traffic required by
80211listener plug-in to obtain the same metric using the DLEP application. For this purpose, the ac-
tive tool and DLEP are started in parallel by the OMF experiment description. This way, comparative
evaluations between active tools and DLEP can be performed.
To give an example for a comparative evaluation with DLEP, validation of a packet loss measurement
tool is described in the following. Consider an end-to-end path consisting of a number of links
between a sender and receiver host. The active tool under test is started along the path to measure
the number of packet losses within the probing stream sent. During the measurement, the active
probing traffic is in parallel used for the acquisition of DLEP informations (including the packet loss
metric) by the 80211listener. By running the DLEP application on each node of the path, packet
loss on each link segment can be obtained separately. Concatenation of packet loss measurements of
different link segments enables to estimate this metric at the end-to-end scope. Thus, upon the end of
the active measurement session, the packet loss is measured in two different ways using one and the
same probing stream. Firstly, one estimate is given by the packet loss measurement tool actively, and
an another estimate is given by DLEP passively. Then, a comparative evaluation of the two metric
estimates can be undertaken to assess the accuracy of the tested active tool.
Similarly, the accuracy of many other active tools can be validated using other provided DLEP infor-
mations including capacity, available bandwidth, signal strength or retransmission counter measure-
ments as reference values.

Deliverable D.4.8
15



2. Development of benchmarking framework

When developing a testbed, the result has to be validated and benchmarked to allow scientific val-
idation and result confidence. This chapter will propose a framework to benchmark the CONFINE
community-lab experimental infrastructure, based on existing testbed benchmark frameworks.

2.1. Introduction

A considerable amount of research on benchmarking of wireless networks has been done within the
CREW[19] project. The proposed benchmarking framework is based on this research.
As stated in [20]; “In the scope of the performance analysis of computer systems, we define bench-
marking as the act of measuring and evaluating computational performance, networking protocols,
devices and networks, under reference conditions, relative to a reference evaluation.”. In this defini-
tion, benchmarking consists of two main parts or activities to complete a benchmark.
• Measuring is the act of performing an experiment under reference conditions and collecting

relevant data during the experiment.
• Evaluating is the act of combining the gathered data into quantitative metrics and interpreting

or comparing those metrics to a reference evaluation.
Benchmarking is preformed using benchmarks. A benchmark is a set of detailed descriptions describ-
ing how the benchmark should be set up, which data should be gathered, how this data is converted
to metrics, how the metrics should be interpreted, and so on. It should provide all the necessary infor-
mation to preform an experiment under the exact same conditions as stated and should result in the
exact same results. This set of descriptions can be divided in the following items.
• A scenario should include the set-up and all the necessary parameters of the experiment.
• The criteria describe the high-level focus of the experiment.
• A metric provides a quantitative measure to evaluate a particular aspect of the experiment.

Those metrics are determined using a well defined methodology.
• A benchmarking score is a combination of the different metrics of the benchmark and is used

to evaluate the experiment.
The success of a benchmark is highly dependant on the definition of the used terms in its items. This
means that a scenario, the criteria, the metrics and the benchmarking scores should be described clear
and unambiguously.

2.2. Goal

The goal of benchmarking is to compare the performance of different experiments or different parame-
ter settings of a single experiment. To achieve this, the comparability and interoperability requirement
of the benchmarking framework should be satisfied.
“Comparability should be a fundamental property of any benchmark; comparability means that two
independently executed benchmarks can be meaningfully compared to each other.”[20]. This means

16



2. Development of benchmarking framework 2.3. Proposed approach

that a benchmark should be independent of the testbed used and independent of the moment it was
executed. Thus for a given benchmark, running it on the same testbed at different moments, should
give the same results. This requirement is called the repeatability of a benchmark. Note that not only
the unit to be tested should be monitored but also the environment which it operates in to achieve
repeatability.
Also for a given benchmark, running it on a testbed with similar capabilities, should give us the same
results. This is called the interoperability requirement. Important for the interoperability require-
ment is the configurability of a testbed environment. The testbed should support at least all of the
configuration settings of a benchmark to successfully execute a benchmark.
To summarise, the benchmarking framework should fulfil the following requirements.
• The comparability requirement and thus also the repeatability requirement.
• The interoperability requirement and thus also the configurability requirement.

2.3. Proposed approach

The proposed benchmarking framework is based on the work from the CREW[19] project.

2.3.1. Framework

The user or actor that wants to run the benchmark, provides to the system a generic benchmark
scenario. With this scenario, the experiment configuration, the metrics used and the benchmark score
calculation are defined as indicated with the arrows in Fig. 2.1.
The experiment config is interpreted by the testbed controller and translated in specific instructions of
the testbed to set-up the benchmarking parameters, such as the test environment, the monitoring pa-
rameters and the data conversions. The testbed controller is the interface between the testbed specific
configuration and the generic configuration.
During the benchmark test run, the monitoring block monitors the parameters provided by the testbed
controller which in turn are generically described in the benchmark scenario. This could be for
instance SNR monitoring, number of transmitted packets, system load, etc. Besides generating data
by the monitoring block, it also verifies that any criteria or requirements of the test are fulfilled.
The data gathered by the monitoring block is testbed specific and is translated by the data conversion
block to the generic metrics as described in the benchmark scenario. The testbed controller sets up
the data conversion block by using the settings in the experiment config. For example, the benchmark
requires the packet drop ratio between two hosts. The testbed controller translates this into monitoring
the number of packets sent from the first to the second host and the number of packets received from
the first host on the second host. The data conversion will gather both counts and calculate the ratio
of dropped packets as the metric.
The metrics are combined by the benchmarking score block into the benchmarking score. This bench-
marking score is then provided to the user as the result of the benchmark.

2.3.2. Definitions

As mentioned before, the success of a benchmark is highly dependent of the definitions used. For
example, what is being monitored by the monitoring block, effectively can correctly be translated

Deliverable D.4.8
17



2.3. Proposed approach 2. Development of benchmarking framework

benchmark 
scenario

experiment config metric(s)

benchmark score

data conversiontestbed control

tested unit & 
its environment monitoring

user

generic

testbed specific

Figure 2.1: High level elements in the framework and their relationships.

into the metrics defined in the benchmarking scenario. Therefore the definitions for the following
items should be clear and agreed upon.

• The methods of monitoring. It should answer how the raw data should be gathered.

• The conversion from raw monitored data to the metrics. This definition answers how the raw
data should be converted in the metric.

• The benchmarking score which answers how the metrics are combined in the benchmarking
score.

In the end, there is a pool of metrics, each with their set of standardised methodologies and operations
for creating the raw data for the metric. This process of creating the pool is an iterative process. When
adding a new metric, the following checks should be verified.

A metric should be

• unambiguous,

• generic,

• independent of a particular testbed and

• complete. Is there data not monitored for the metric that influences the metric?

A standardised methodology for a metric should be

• unambiguous,

• generic and

18
Deliverable D.4.8



2. Development of benchmarking framework 2.3. Proposed approach

• independent of a particular testbed.

A benchmarking score can then be defined using a subset of the pool of metrics and operations be-
tween them. Also for a benchmarking score the following checks should be verified.

A benchmarking score should be

• unambiguously.

• generic.

• complete. Are there metrics not in the benchmarking score that influence the interpretation of
the benchmarking score?

2.3.3. Interfaces

Another important aspect of the benchmarking framework is the transition between the generic and
the testbed specific section. The experiment configuration should be provided to the testbed controller
in a standardised data format such as OMF. This allows every testbed controller implementation to
easily adopt to the benchmarking framework.

Also the interface between the data conversion and the metric block needs a standardised way of
exchanging data such as the JSON format.

2.3.4. Resources

To allow rapid adaptation of testbeds to the benchmarking framework, documentation, implementa-
tion and other resources of the benchmarking framework should be available. For example, scripts to
generate data for a given metric, implementation of a monitoring system, etc.

Also a set of testing scenarios should be provided. Such a test scenario is the unit test for a given
benchmarking score. It allows testbeds to verify their implementation of a benchmarking scenario
and the resulting benchmarking score. Creating such a set of testing scenarios should be incorporated
in the process of creating and defining a benchmarking score.

2.3.5. Application to Community-Lab

The proposed benchmarking framework still has to be formally applied to the CONFINE testbed
Community-Lab. This is an important task during year three. However, a number of components are
already in place.

The experiment config is handled by the CONFINE controller in a CONFINE-specific format, but an
OMF integration is also being developed. More information on this OMF integration can be found in
deliverable D3.2. The testbed control is performed by the CONFINE controller, which is described
in detail in deliverables D2.1 and D2.2. Monitoring is performed by the CONFINE monitor, which is
outlined in the section “A Monitoring system for Community-Lab” in deliverable D4.2.

The data exchange format and testing scenarios are the most important missing resources to imple-
ment a benchmarking framework, apart from defining the benchmark methodologies. This will be the
main focus of the benchmarking efforts during year three.

Deliverable D.4.8
19



2.4. Conclusion 2. Development of benchmarking framework

2.4. Conclusion

A great benefit of the proposed benchmarking framework is the generality it provides to the user. The
user can create a scenario independent of any testbed used. The result of the benchmark is a simple
score which should be easily interpreted by the user. Yet to provide such ease-of-use, the framework
should be unambiguous en well defined. The metrics should be complete, the methodologies and in-
terfaces should be standardised. Building the set of metrics and methodologies is an iterative process
where testing scenarios help future testbed implementors to verify their testbed controller implemen-
tation. The CONFINE project already has a number of components in place to create the proposed
benchmarking framework. The efforts in year three will focus on the missing components.

20
Deliverable D.4.8



3. Documentation of best practices

The best practices documentation of CONFINE aims at gathering the experiences made by the differ-
ent experimenters that use the Community-Lab facility.
This chapter describes initial results from the open call experiments, which were initiated during
year 2. In addition, this chapter describes tools to assist in setting up realistic experiments using the
CONFINE testbed. Hints which help to make experimentation easier are provided.

3.1. Experimentally driven research

The main feed for this documentation are the projects that in experimentally driven research use the
Community-Lab facility. As a result of CONFINE’s first open call in 2012, five projects were selected
that are currently using Community-Lab. Within the FIRE objective in FP7 Call 8 for experiments on
FIRE facilities, a FIRE research project was selected that also uses the Community-Lab facility.
The tool to share the experiences of the testbed users among each other and with external users
in terms of a best practice document was found to be the CONFINE Wiki with a specific page on
best practices (https://wiki.confine-project.eu/bestpractice:start) and link-
ing to a collection of experimenter’s experiences (https://wiki.confine-project.eu/
bestpractice:experiences-experiment).
We note that the content of these Wiki pages are edited in an ongoing way, following the evolution
of the experiments and the gaining of additional insights in the testbed usage. Editing is open to the
CONFINE consortium members so that each experimenter is able to add and share his/her experi-
ences.
The content is expected to be useful for future users of Community-Lab to see experiments from a
practical perspective, and to see the steps that other experiments followed for using Community-Lab.
For reference and documentation purposes, appendix A gives a copy of the Wiki page at the time of
writing this deliverable.
Finally, the tutorials (http://wiki.confine-project.eu/tutorials:start) and the
manual (http://wiki.confine-project.eu/usage:start) also form a perfect example
of best practices. Both are available to everyone on the CONFINE wiki.

3.2. Link Error Model for VCT

The CONFINE testbed infrastructure cannot only be used for real world testbeds, it can also be used
as a completely virtualized testbed for local experiments. Each CONFINE node is implemented as a
virtual machine on a server system, which are connected by a Linux bridge.
Unfortunately using the Linux bridging code limits the types of connectivity that can be used in the
emulated mesh network. It is easy to prevent certain pairs of nodes to communicate with each other by
using the EBTables subsystem, but this constrains the virtual testbed to a set of perfect links without
any packet loss. While Linux includes a subsystem called NetEm (Network Emulator) to emulate

21

https://wiki.confine-project.eu/bestpractice:start
https://wiki.confine-project.eu/bestpractice:experiences-experiment
https://wiki.confine-project.eu/bestpractice:experiences-experiment
http://wiki.confine-project.eu/tutorials:start
http://wiki.confine-project.eu/usage:start


3.2. Link Error Model for VCT 3. Documentation of best practices

VM1

Kernel Bridge

eth0 eth1

VM2

eth0 eth1

Figure 3.1: Connection of virtual machines with central bridge for link error model.

packet loss, delay and packet reordering, it is also very hard to setup and use because NetEm is part
of the traffic shaping subsystem of Linux.
To make it easier to setup a virtualized testbed with lossy links, the we developed a set of scripts
using only EBTables and IPTables subsystem to generate configurable packet loss between each pair
of virtualized CONFINE nodes. EBTables is used to mark forwarded packets based on the incoming
and outgoing interface. This marker is then used by the IPTables statistics module to drop a certain
proportion of the packets.
Additionally, we used measurements of IEEE 802.11 packet loss to write a function that can be used to
estimate the unicast or broadcast packet loss based on the distance between the two communication
partners. This functions allow to setup a topology based on coordinates on a 2D grid and quickly
calculate a rough estimate of the packet loss between each pair of nodes.
While this link error model cannot emulate the effects of collisions between packets or the delay
caused by transmission speed or retransmissions, it allows to easily setup a more realistic virtual
testbed.
To connect multiple virtual machines with the link layer model, all of the virtual machine interfaces
must be connected to the same bridge (see Fig. 3.1). The bash shell script (see wiki for script: [21])
then allows the user to easily setup (static) connections between pairs of nodes, each of them with a
configurable unicast and broadcast packet loss. The names of the virtual machine interfaces just have
to be edited into the shell script.
The following example script is setting up a simple line connection between a group of four virtual
machines, each of them with a unicast success rate of 1.0 and a broadcast success rate of 0.7. There is
also connectivity between two-hop neighbours, but with a unicast success rate of 0.7 and a broadcast
success rate of 0.5.

Listing 3.1: Simple topology setup for VCT
# ! / b i n / bash

. . / r o u t e b a s i c . sh

22
Deliverable D.4.8



3. Documentation of best practices 3.2. Link Error Model for VCT

r o u t e i n i t

s e t r o u t e e t h 1 1 2 100 70
s e t r o u t e e t h 1 2 3 100 70
s e t r o u t e e t h 1 3 4 100 70

s e t r o u t e e t h 1 1 3 70 50
s e t r o u t e e t h 1 2 4 70 50

Based on an earlier work of Fraunhofer FKIE the script also includes a function to calculate a rough
guess of Wi-Fi transmission success rate based on a distance in meters. This function can be used to
calculate the success rate from a set of node positions.

Listing 3.2: Calculating packetloss from distance
# ! / b i n / bash

. . / r o u t e b a s i c . sh
r o u t e i n i t

u c l o s s =$ ( c a l c m u l t i c a s t s u c c e s s r a t e 200)
m c l o s s =$ ( c a l c u n i c a s t s u c c e s s r a t e 200)

s e t r o u t e e t h 1 1 2 ${ u c l o s s } ${m c l o s s }
s e t r o u t e e t h 1 2 3 ${ u c l o s s } ${m c l o s s ]

Unicast packet loss is estimated as a failure of five packets, each sent with broadcast loss rate.
A paper on this research will be presented during the CNBuB ’13 workshop in October 2013.

Deliverable D.4.8
23



A. Appendix: Experiment Experience

Note: this appendix reflects the state of the Wiki page https://wiki.confine-project.
eu/bestpractice:experiences-experiment at the moment of writing this deliverable,
and serves as offline documentation for this online resource.

This page is an ongoing work and describes experiences and ways
that were followed to run experiments of different projects using
the Community-Lab facility.

A.1. Open Source P2P Streaming for Community Networks

A.1.1. Introduction

The goal of the experiment is demonstrating that Community Networks can support advanced multi-
media services such as real-time video and TV distribution.

The study of efficient video streaming techniques will be done through the Open Source P2P stream-
ing software PeerStreamer.

The project will produce a stable version of the application tailored for Community Networks. The
experiments will give useful indications on design and dimensioning of the networks as well as on the
best practices to implement streaming services with various delay constraints on top of Community
Networks.

A.1.2. Experiences and Steps

Installation of VCT and experiments on a dedicated machine to run experiments before deployment
on the community-lab;

Preparation for experiments with real slivers in Community-Lab.

Experiments on functional tests using the IPv6 version of PeerStreamer either among the Community-
Lab’s slivers or with UniTN peers connected through tinc.

A new PeerStremer source has been setup in UniTN to increase the video streaming offer in the
Community-Lab when possible. The source will be moved within the Community-Lab upon the
availability of resources.

Investigation of IPv4 network connectivity limits in the Community-Lab related to both single and
multiple NAT levels. Issues with nested NATs have been identified. P2P communications are sensitive
to NAT punching limitations.

Assessing communications among slivers on different islands and between slivers and UniTN external
peers (not connected through tinc).

24

https://wiki.confine-project.eu/bestpractice:experiences-experiment
https://wiki.confine-project.eu/bestpractice:experiences-experiment


A. Appendix: Experiment Experience A.2. Anonymous communication with unobservability

A.2. Anonymous communication with unobservability

A.2.1. Introduction

In this project we propose to study the practical applicability of an online advertising network called
AdLeaks through the CONFINE testbed. AdLeaks leverages the ubiquity of unsolicited online adver-
tising to provide complete sender unobservability when submitting disclosures. AdLeaks ads com-
pute a random function in a browser and submit the outcome to the AdLeaks infrastructure. Such
a whistleblower’s browser replaces the output with encrypted information so that the transmission
is indistinguishable from that of a regular browser. Its back-end design assures that AdLeaks must
process only a fraction of the resulting traffic in order to receive disclosures with high probability.
We have implemented the AdLeaks system design and we have evaluated it through mathematical
analysis and micro-benchmarks.

A.2.2. Experiences and steps

Data access: together with Guifi partners, real data from Guifi proxies was obtained. For this purpose,
Guifi set up a proxy that that generated logs for a longer time period. Data anonimization: the log data
was anonymized. The collected anonymized logs were cleaned and some post-processing was done.
Data models: the data helped us to complete our statistical models and thus being able to recreate
realistic traffic conditions for our experiments.
Independently of the data gathering, a browser extension for the blogging platform has been devel-
oped.
Work on the traffic gathering extension will start soon.
We ported our benchmarking tools and server code to OpenWRT in preparation of a deployment
within the CONFINE testbed.

A.3. Exploitation of information Centric network principles in wireLess
cOmmunity NEtworks

A.3.1. Introduction

Our experiments seek to exploit the instruments of an Information Centric Network (ICN), namely
in-network caching and routing-by-name, to shorten the multi-hop path through a dynamic replica-
tion of information and services, on community devices. Following an evolutionary approach, ICN
functionality is deployed over IP, without compromising the operating regime of IP-based commu-
nity services. We prototype a community web hosting service, named WSaaS, that uses storage and
computation resources of community user’s hosts, to dynamically replicate Web pages of commu-
nity users. We use Community-Lab facility to carry out comparative experimentations, ICN vs. IP,
showing performance improvements obtained both for basic point-to-point data transfer and within
the community web hosting use-case.

A.3.2. Experiences and steps

Familiarisation and usage of the Virtual CONFINE Testbed

Deliverable D.4.8
25



A.4. Wi-Fi network Infrastructure eXtension (WiFIX) A. Appendix: Experiment Experience

The VCT tool helped to assess the possibility of deploying ICN tool.
Creation of slivers in the Community-Lab testbed.

A.4. Wi-Fi network Infrastructure eXtension (WiFIX)

A.4.1. Introduction

INESC TEC has defined a solution for WMN, named Wi-Fi network Infrastructure eXtension
(WiFIX), that considers (1) unicast, multicast, and broadcast routing, (2) channel assignment, and
(3) multi-hop medium access control aspects, in order to support existing and new applications on
top. WiFIX overcomes the disadvantages of existing WMN solutions, namely by: i) reducing rout-
ing signalling overhead; ii) considering a new approach for multicast/broadcast traffic diffusion that
takes advantage of Wi-Fi built- in unicast data rate control and delivery guarantee; iii) defining a
topology-aware channel assignment algorithm that increases WMN performance and scalability; iv)
considering a multi-hop scheduling mechanism overlaid on the 802.11 MAC, which enables efficient
and fair WMN multi-hop medium access; Experiments in Community-Lab aim to complement our
evaluations of WiFIX with real-world, large-scale WMN experiments.

A.4.2. Experiences and steps

With the CONFINE consortium, the option of the WiBed testbed was found in order to enable in an
easier way part of our requirements for our experiments.
Familiarization with WiBed testbed through its documentation.
Familiarization with the WiBed testbed tools.
Compilation and configuration of the WiBed related software, creation of the image file to be installed
in the mesh nodes, preparatory steps at local nodes at INESC.

A.5. Confidentiality in the open CONFINE world

A.5.1. Introduction

Our experiments look at data protection and confidentiality issues by evaluating and analyzing to
which extent existing privacy-preserving routing techniques applied on the Internet can be transferred
and tailored to the needs of community-based networks. To this end we want to test which of the
available privacy-preserving routing techniques can be efficiently deployed in the community-based
networks. We put our focus on lightweight methods developed by ourselves that are specially de-
signed for environments with limited resources, lack of a central point of trust, and that are able to
deal with a high churn rate.

A.5.2. Experiences and steps

Research work on WiFi access point fingerprinting to protect against spoofing
Familiarization with virtual CONFINE testbed (VCT).
Sliver images that are fully pre-configured are an interesting option that should be better supported,
while the option of installing manually at runtime via SSH should rather be a backup solution.

26
Deliverable D.4.8



A. Appendix: Experiment Experience A.6. Clouds in Community Networks

A.6. Clouds in Community Networks

A.6.1. Introduction

This project aims to provide community services organised as community clouds. Experimentally-
driven research, using the Community-Lab testbed will be used for the evaluation of the community
cloud.

A.6.2. Experiences and steps

Remote researchers have access to the Guifi community network.
Confine controller creates slices of VMs. These slices can contain VMs on geographically distant
cloud resources.
VM templates could be customized for our purposes and can be deployed through the Confine-
controller to our VMs.
Additional hardware for cloud resources could be added to the Guifi community network through the
Community-Lab infrastructure.
Due to the open source policy of the CONFINE project which facilitates easy access to all source
code, the potential for federation of Confine-controller with Cloud management platforms can be
explored.

Deliverable D.4.8
27



B. Conclusions

This deliverable has described the tools for experimental research, as developed and studied by the
CONFINE project in task T4.3 and milestone MS13.
The first chapter, on open data, primarily serves as a source of information for external researchers.
It describes the open data aspects of Community-Lab. The concepts of open data are introduced,
followed by a strategy to generate open data in the CONFINE project. Then, three methods to generate
open data are presented: a mapping tool, publishing existing open data from community networks and
a DLEP experiment integration method.
The second chapter, on benchmarking, will primarily serve as a reference point for internal re-
searchers, as it provides a means to validate their results. It outlines the CONFINE testbed benchmark-
ing framework, based on a framework from an existing EU FP7 project. It describes a incremental
approach, which will be implemented during year 3 of the project.
The third and final chapter, on best practices, is input to both internal researchers who use the testbed
and external researchers who want to implement a similar experimental facility. This chapter describes
best practices from working with community-lab, both from ongoing open call experiments and from
the development of a simulation tool which can help predict testbed behaviour.
Overall, the research reported in this deliverable presents good progress and shows a number of inter-
esting opportunities to further improve the testbed and its community network infrastructure.

28



Bibliography

[1] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Freitag, Leandro Navarro,
Joseph Bonicioli, Stavros Papathanasiou, Pau Escrich, Roger Baig Vinas, Aaron L. Kaplan, Axel
Neumann, Ivan Vilata i Balaguer, Blaine Tatum, and Malcolm Matson, “A case for research with
and on community networks,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp. 68–73,
July 2013. 1.1

[2] “Data.gov,” http://www.data.gov/. 1.1
[3] “European union open data portal,” http://open-data.europa.eu/. 1.1
[4] “World databank,” http://data.worldbank.org/. 1.1
[5] “Measurement lab,” http://measurement-lab.org/. 1.1
[6] “Open knowledge foundation,” http://okfn.org/. 1.1
[7] “CKAN,” http://ckan.org/. 1.2.1
[8] “Open data commons open database license,” http://opendatacommons.org/licenses/odbl/. 1.2.2
[9] “Open data commons,” http://opendatacommons.org/licenses/odbl/. 1.2.2

[10] “Guifi.net Growth Map,”
http://guifi.net/en/guifi/menu/stats/growthmap. 1.3.1

[11] Thomas Clausen, Philippe Jacquet, Cédric Adjih, Anis Laouiti, Pascale Minet, Paul Muhlethaler,
Amir Qayyum, Laurent Viennot, et al., “Optimized link state routing protocol (olsr),” 2003.
1.3.3

[12] “Cisco Discovery Protocol,” http://www.cisco.com/en/US/docs/ios-xml/ios/cdp/configuration/
15-mt/nm-cdp-discover.html. 1.3.3

[13] “MikroTik Neighbor Discovery Protocol,” http://wiki.mikrotik.com/wiki/Manual:IP/
Neighbor discovery. 1.3.3

[14] “Graph Exchange XML Format,” http://www.gexf.net/format/. 1.3.6
[15] Jinliang Fan, Jun Xu, Mostafa H. Ammar, and Sue B. Moon, “Prefix-preserving {IP} address

anonymization: measurement-based security evaluation and a new cryptography-based scheme,”
Computer Networks, vol. 46, no. 2, pp. 253 – 272, 2004. 1.4.1

[16] “Pycryptopan github repository,” https://github.com/FFM/pycryptopan. 1.4.1
[17] “The python package index - pycryptopan,” http://pypi.python.org/pypi/pycryptopan. 1.4.1
[18] “RIPE RIS raw data,” http://www.ripe.net/data-tools/stats/ris/ris-raw-data. 1.5.3
[19] “CREW project,” http://www.crew-project.eu. 2.1, 2.3
[20] Stefan Bouckaert, Jono Vanhie-Van Gerwen, Ingrid Moerman, Stephen C Phillips, Jerker Wi-

lander, Shafqat Ur Rehman, Walid Dabbous, and Thierry Turletti, “Benchmarking computers
and computer networks.,” . 2.1, 2.2

[21] “Documentation of best practices,” https://wiki.confine-project.eu/bestpractice:start. 3.2

29


	1 Open Data
	1.1 Introduction
	1.2 CONFINE Open Data Strategy
	1.2.1 Storage
	1.2.2 Licensing

	1.3 A Community Network Mapper
	1.3.1 Goal
	1.3.2 Approach
	1.3.3 Discovery
	1.3.4 Extraction
	1.3.5 Grouping
	1.3.6 Result Generation
	1.3.7 Results

	1.4 Open Data Anonymization
	1.4.1 pycryptopan

	1.5 Community Network Open Data
	1.5.1 Funkfeuer
	1.5.1.1 Topology
	1.5.1.2 Traceroute statistics
	1.5.1.3 Ping statistics

	1.5.2 Guifi
	1.5.2.1 Guifi.net Database
	1.5.2.2 Guifi Proxy Logs

	1.5.3 AWMN

	1.6 DLEP-Based Open Data Collection
	1.6.1 Introduction to DLEP
	1.6.2 Architecture for Open Data Set Collection


	2 Development of benchmarking framework
	2.1 Introduction
	2.2 Goal
	2.3 Proposed approach
	2.3.1 Framework
	2.3.2 Definitions
	2.3.3 Interfaces
	2.3.4 Resources
	2.3.5 Application to Community-Lab

	2.4 Conclusion

	3 Documentation of best practices
	3.1 Experimentally driven research
	3.2 Link Error Model for VCT

	A Appendix: Experiment Experience
	A.1 Open Source P2P Streaming for Community Networks
	A.1.1 Introduction
	A.1.2 Experiences and Steps

	A.2 Anonymous communication with unobservability
	A.2.1 Introduction
	A.2.2 Experiences and steps

	A.3 Exploitation of information Centric network …
	A.3.1 Introduction
	A.3.2 Experiences and steps

	A.4 Wi-Fi network Infrastructure eXtension (WiFIX)
	A.4.1 Introduction
	A.4.2 Experiences and steps

	A.5 Confidentiality in the open CONFINE world
	A.5.1 Introduction
	A.5.2 Experiences and steps

	A.6 Clouds in Community Networks
	A.6.1 Introduction
	A.6.2 Experiences and steps


	B Conclusions

