
System enhancements
(Year 2)

Deliverable D2.3

Date: 18th September 2013

Version: 1.0

D2.3 System enhancements (Year 2)

Editor: Lorena Merino, Ivan Vilata

Deliverable nature: Report (R)

Disseminaton level: Public (PU)

Contractual Delivery
Date:

15/11/2013

Actual Delivery Date 20/09/2013

Suggested Readers: Project partners

Number of pages: 27

Keywords: Sofware, node system, tools, services

Authors:

Peer review:

Marc Aymerich, Axel Neumann, Ivan Vilata (Pangea).
Bart Braem, Glenn Daneels (iMinds),
Leandro Navarro, Manos Dimos, Navaneeth Rameshan (UPC)
Henning Rogge, Anne Diefenbach (Fraunhofer FKIE)
Ralph Schlaterbeck, Aaron Kaplan (Funkfeuer)
Pau Escrich (Guif)

Leandro Navarro, Roc Messeguer (UPC)

A b st ra c t

This document presents an update of the architecture, design and development of the CONFINE
testbed sofware system done during the second year of the project. It builds on the work
reported in D2.1 during the frst year of the project. The sofware can be found in the project
repository at htp://redmine.confne-project.eu.

Version 1.0 – 15/09/2013 Page 2

http://redmine.confine-project.eu/

D2.3 System enhancements (Year 2)

Table of Contents

1. Introducton .. 5

1.1. Contents of the deliverable ... 5
1.2. Relatonship to other project deliverables .. 5

2. Core Testbed Components ... 7

2.1. REST API .. 7
2.2. Testbed controller .. 7
2.3. Node sofware ... 9
2.4. Virtual CONFINE Testbed (VCT) and VCT container .. 9
2.5. Testng the system ... 9

3. Common NodeDB (user Interface/admin Interface) ... 10

3.1. Overview .. 10
3.2. Node Database .. 12
3.3. Common API ... 12
3.4. Dashboard ... 12
3.5. Authorizaton ... 13
3.6. Network Monitoring and Statstcs ... 13
3.7. Conversion and Import .. 14
3.8. Lessons learned from importers .. 15
3.9. Spider ... 15
3.10. Improvements to the relatonal database back-end ... 16

4. Monitoring And Self-management .. 18

4.1. Motvaton ... 18
4.2. Design .. 19

5. Sofware-defned Networking .. 21

6. COntrol And Management Framework (OMF) .. 22

7. DLEP ... 23

7.1. DLEP development .. 23
7.2. CONFINE DLEP implementaton ... 23

8. Conclusions ... 25

9. References .. 26

F i g u re s

Figure 1: Models And Relatonships In Django .. 9

Figure 2: An Overview Of The Overall Architecture Of The NodeDB ... 11

Figure 3: Object Model Of Common Node Database .. 13

Figure 4: Funkfeuer Topology ... 16

Figure 5: The List Of Node Status .. 21

Figure 6: Historical Data For A Specifc Parameter For A Node .. 21

Version 1.0 – 15/09/2013 Page 3

D2.3 System enhancements (Year 2)

Figure 7: A Treemap View Of The Historical Data For All Nodes .. 22

Ta b l e s

Version 1.0 – 15/09/2013 Page 4

D2.3 System enhancements (Year 2)

1 . Introducton

1.1. Contents of the deliverable

This document presents an update of the architecture, design and development of the CONFINE
testbed sofware system done during the second year of the project. It builds on the work
reported in D2.1 during the frst year of the project.

The descripton of work document for CONFINE mentons this deliverable as instrumental to
refect progress in the following items:

In Indicators or advance over the state of the art:

“That work will be performed and revised over the 4 yearly iteratons of the testbed in task
T2.4. Revisions to the sofware will be released on D2.3 (M24), D2.5 (M36) and D2.7
(M48).”

“Sofware components that implement proposed algorithms and integrate them into the
management frameworks are defned in T2.3 and delivered in D2.3 (M24), D2.5 (M36) and
D2.7 (M48).”

“Sofware tools for implementng self-management actons for the automaton of the
testbed, dealing with the interrelated problems of distributed (global) allocaton of
channels, IP addresses, IP ranges, routes, routng domains. These tools will be integrated in
the enhancements to the management tools and services and the embedded system
sofware developed in T2.4 and delivered in D2.3 (M24), D2.5 (M36) and D2.7 (M48).”

As part of T2.2, this deliverable is described as:

“The enhancements of tools and services, and the update of embedded node system will be
reported in D2.3 (M24) (sofware and documentaton), D2.5 (M36) (sofware and
document), D2.7 (M48), describing in detail the problem addressed and the developed
soluton. D2.7 (M48) will be the fnal sofware system and a complete report of the fnal
system.”

This document comprises the following topics:

• A descripton of the sofware developments in this period

• Links to the online documentaton1 and the sofware repository2.

1.2. Relatonship to other project deliverables

D2.1 Inital system sofware and services of the testbed – M12: A report that describes the
sofware to construct the testbed developed during the frst year. D2.3 updates D2.1 and describes
the new developments in year 2.

D2.2 Inital sofware system for the testbed (nodes, services) – M12: A snapshot of the
developed sofware (D2.1) at month 12. The latest version of the sofware can at any tme be
downloaded from the publicly accessible CONFINE repositories (htp://redmine.confne-
project.eu). D2.2 contains the implementaton of the sofware system described in D2.1. D2.3

1 Project wiki: htp://wiki.confne-project.eu
2 Project sofware repository: htp://redmine.confne-project.eu

Version 1.0 – 15/09/2013 Page 5

http://redmine.confine-project.eu/
http://redmine.confine-project.eu/

D2.3 System enhancements (Year 2)

includes a reference to the updates in the CONFINE sofware during the second year of the
project.

D2.6 Implementaton of federaton mechanisms for community networks – M24: Describe the
federaton mechanisms explored in the CONFINE project which are used to interconnect the
diverse community networks involved in the project. D3.2 uses these concepts.

D3.1 Operaton and support guides of the testbed – M12: The CONFINE project deploys its
testbed for community networks called Community-Lab3, and a virtual local testbed (VCT), which
are based on the CONFINE testbed sofware system developed in WP2 and presented in D2.1 and
D2.3. D3.1 therefore describes the testbed that instances the CONFINE testbed sofware system
described in D2.1. D3.2 builds and refnes D3.1.

D3.2 Inital management guide of the testbed – M24: Describes how the sofware developed in
the two years of the project is used to provide an operatonal testbed for researchers. This is based
on the sofware reported here.

D4.1 Experimental research on testbed for community networks (year 1) – M12: D4.1 reports on
experimentally driven research that was carried out to support the development of the CONFINE
testbed sofware system. The interacton between WP2 and WP4 was bidirectonal. The
development of the testbed required looking at optons beyond the limits of the current state-of-
the-art. Work of WP4 also comprised a review of research topics relevant for community networks
in order to identfy use cases to be taken into account in the architecture and design of the
CONFINE testbed sofware system. D4.1 therefore contains research work that contributed to the
development of the CONFINE testbed sofware system.

D4.8 Tools for experimental research (year 2) – M24. Similarly to D4.1 it reports on the research
actvites in the second year of the project. Several actvites have used the CONFINE testbed.

D5.1 Disseminaton, training, standardizaton actvites in year 1 – M12: This deliverable reports
on the interactons the CONFINE project had with diferent stakeholders in many kinds of events.
While on one hand the CONFINE project was communicated to third partes, CONFINE also
received valuable external feedback, which also contributed to the development of the CONFINE
testbed sofware system reported in D2.1 and here.

D5.4 Disseminaton, training, standardizaton actvites in year 2 – M24: Similarly to D5.1 it
reports on the disseminaton, training and standardizaton actvites in the second year of the
project.

3 htp://community-lab.net/

Version 1.0 – 15/09/2013 Page 6

D2.3 System enhancements (Year 2)

2 . Core testbed components

2.1. REST API

Besides refectng architectural updates resultng from the stabilizaton and testng of CONFINE
code (including the complete defniton of users, groups, roles and permissions), the CONFINE
REST API4 has become more structured and modularized to beter encapsulate separate
subsystems (community network, management network, tnc VPN backend). It is also more
standards-compliant (JSON pointer, JSON patch, HTTP headers) and RESTful (e.g. use URIs instead
of numeric resource identfers) with enhanced browseability.

2.2. Testbed controller

The CONFINE controller5 is a sofware package used for managing CONFINE testbeds. It provides
users with a web interface as well as a REST API, allowing them to create and manage slices of the
testbed.

Additonal extra functonality has been added besides the core components for managing nodes
and slices. A tcket system has been developed as part of this sofware package allowing
researchers, technicians and testbed operators to report and track all kinds of testbed related
issues. Feedback from the testbed components is now provided by the controller through periodic
monitoring of the node state as well as monitoring the management network connectvity of
diferent components (nodes, slivers, hosts). Finally mechanisms for centralized node management
have been put in place in order to ease the maintenance of large scale testbeds by enabling the
executon of operatons in multple nodes at once.

2.2.1. REST API RESOURCE LIST FILTERING

The CONFINE controller REST API6 allows listng resources; for example, calling
htps://panel.community-lab.net/api/nodes/ will give a list of all nodes registered to the controller.
Since depending on the size of the testbed, this list can get very long, the API defnes, among
other possibilites, a format for fltering this list server-side7. The requirement is that a key-value
pair consistng of a JSON pointer8 and a matching value be passed in the URL to serve as flters:
e. g. htps://panel.community-lab.net/api/nodes/?/slivers/slice/id=60, with /slivers/slice/id being
the pointer relatve to the objects in the list (i.e. the nodes) and 60 the value, would return all
nodes who have slivers belonging to the slice with ID 60. The JSON pointer may contain one or
more wildcards consistng of an underscore (_), each representng a reference token in the pointer.
htps://panel.community-lab.net/api/nodes/?/slivers/_/id=60 would be an example of a query
containing a wildcard, and it would return all nodes that have slivers which belong to, refer to or
contain any element – such as the sliver’s slice, the node, the template – with ID 60.

The CONFINE controller is implemented using the web framework Django9. The Django REST flter
package10 does not cover this use case, so it had to be implemented specifcally for the CONFINE
4htp://wiki.confne-project.eu/arch:rest-api
5htp://wiki.confne-project.eu/sof:server
6htps://wiki.confne-project.eu/arch:rest-api. Last accessed 1st August 2013
7htps://wiki.confne-project.eu/arch:rest-api#fltering. Last accessed 1st August 2013
8htp://tools.iet.org/html/draf-iet-appsawg-json-pointer-03. Last accessed 1st August 2013
9htps://www.djangoproject.com/. Last accessed 2nd August 2013
10htp://django-rest-framework.org/api-guide/fltering.html. Last accessed 2nd August 2013

Version 1.0 – 15/09/2013 Page 7

D2.3 System enhancements (Year 2)

project. The JSON pointer query has to be translated into a query the Django query fltering
mechanism11 can understand. This is fairly straightorward for a query without wildcards – all that
needs to be done there is to change the slashes (/) to double underscores (__); the relatonship
between the reference tokens is processed by Django. Processing a wildcard is more complicated
because it is necessary to fnd all possible members which ft the wildcard(s). Following the pointer
reference tokens and the Django objects or models they represent one by one allows us to frst
validate the path up to the wildcard and then get the candidates for the wildcard. To achieve this,
we use the internal Django meta functonality which allows introspecton of Django models. This is
complicated by the way Django diferentates between foreign key felds, many-to-many felds,
one-to-one felds, and what we will here refer to as simple felds12, as well as the fact that,
intended as they are for internal use, the Django meta functonalites are barely documented 13. As
a result, trial-and-error is the only way to fnd out which functon accesses which sort of feld and
how to get the related model, for which there are at least two methods depending on the
relatonship. Moreover, foreign key relatonships, such as are used to model the way a slice
consists of slivers and a sliver belongs to a slice, must be declared on only one model of the two
models involved – in our case on the sliver. The fact that a slice contains slivers is hidden in the
metadata. Since we need to discover the existence of such an element, the usual way to access
such backwards relatonships14 is useless to us. And once a way to access these related elements is
found, we need to make sure we do not create an infnite loop between a foreign key and a reverse
foreign key in case the query contains two back-to-back wildcards. Figure 1 shows how to access
simple and foreign key felds. name is a simple feld whose model is the one containing it. template
is a foreign key feld with model Template. slivers is a RelatedObject representng the backwards
foreign key slice of model Slice contained in Sliver. Many-to-many related objects have to be
a c c e s s e d s e p a ra t e l y ; t h e y a r e r e t r i e v e d w i t h model._meta.many_to_many a n d
model._meta.get_all_related_many_to_many_objects() respectvely.

Figure 1 : Models and relationships in Django

Once we have found all wildcard candidates including the related objects, they need to be
validated against the rest of the pointer and the possibility of convertng the query value to a
matching type. All paths which pass these checks are transformed into queries for the Django
fltering mechanism. Since we want to display the results for all these queries together, we need to

11htps://docs.djangoproject.com/en/dev/topics/db/queries/#retrieving-specifc-objects-with-flters. Last accessed 2nd August 2013
12htps://docs.djangoproject.com/en/dev/topics/db/models/#felds. Last accessed 2nd August 2013
13htps://readthedocs.org/projects/django-model-_meta-reference/. Last accessed 2nd August 2013
14htps://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects. Last accessed 2nd August 2013

Version 1.0 – 15/09/2013 Page 8

D2.3 System enhancements (Year 2)

use Q objects which allow more complex lookups such as the logical OR combinaton of querysets
which we need here.

The possibility of combining queries using the ampersand (&) remains. For the Django fltering
mechanism, this means that each resultng queryset is fltered again by the following query. This is
a logical AND combinaton of the querysets.

2.3. Node sofware

Major parts of the CONFINE Node System15 (initally based on the “A hack” milestone) have been
extended and re-implemented to conform with the long-term- and polling-based CONFINE API
(“Bare bones”). This implementaton is now used productvely in the Community-Lab CONFINE
testbed. To cope with ongoing and future system developments and fxes, mechanisms have been
integrated to monitor currently installed sofware versions, detect abnormal node behavior, and
upgrade nodes at diferent levels ranging from full system re-installatons to life updates preserving
currently running experiments16.

2.4. Virtual CONFINE Testbed (VCT) and VCT container

With the inclusion in the Virtual CONFINE Testbed17 (VCT) of controller sofware, VCT has become
the recommended entry point for new users, since it ofers an environment that closely resembles
a real CONFINE testbed. The VCT container18 provides a packaged VCT for further ease of use.
Also, VCT now supports natve node images for virtual nodes, which provides a more faithful
environment for testng and quality assurance.

2.5. Testng the system

For the tme being, the only automated testng is carried by a contnuous integraton server 19

based on Jenkins20 which checks that node sofware can be built. The rest of the testng is stll
done manually, with node sofware tested under the Virtual CONFINE Testbed21 (VCT)
environment and then on real hardware, and controller sofware tested under VCT and then on a
sandbox testbed with real nodes.

15htp://wiki.confne-project.eu/sof:node-system-bare-bones
16htp://wiki.confne-project.eu/sof:node-upgrade
17htp://wiki.confne-project.eu/sof:vct
18htp://wiki.confne-project.eu/sof:vct-container
19htp://builds.confne-project.eu/jenkins/
20htp://jenkins-ci.org/
21htp://wiki.confne-project.eu/sof:vct-container

Version 1.0 – 15/09/2013 Page 9

D2.3 System enhancements (Year 2)

3 . Common NodeDB (user interface/admin interface)

3.1. Overview

For community wireless networks (CWNs), a node database serves as a central repository of
network informaton. This “registry” functonality is separate from the testbed controller, which is
described above. The testbed controller manages the CONFINE testbed and the experiments
(creaton of slivers, slices, etc). In contrast to this, the common NodeDB manages the network
informaton per se for the community network. It is a registry, a link planning tool, an IP address
assignment tool, etc. It comprises informaton about nodes deployed at certain locatons, devices
installed at these locatons, informaton about internet addresses, and — in networks that use
explicit link planning — links among devices.

All this informaton is maintained via a web or REST interface by the community members.
Therefore the common NodeDB contains the statc as well as the dynamic informaton about the
community network as opposed to the experimental testbed network informaton. It is easy to see
that a node database is a central component of any community network. Usually community
networks thrive to be decentralized, however there are a few centralized components which
cannot easily be distributed: IP address assignment and informaton on optmal channel
assignments. It helps to have tools such as the NodeDB for planning these common, shared
resources in a community network.

During the last reportng period work on a Node Database (see 3.2) and the Common API (see 3.3)
contnued. An applicaton that already uses the prototype of this API, the Dashboard (see 3.4) is
intended to display all informaton a user needs and allow easy maintenance of node informaton.
It integrates both statc informaton (node and device data, IP allocaton) and dynamic
performance data. It will probably be integrated with our Monitoring and Statstcs (see 3.6). For
the web-interface as well as the Dashboard, two new Authorizaton (see 3.5) mechanisms were
implemented.

The Statstcs Server and the Spider (see 3.9) collect data from a running network. Thus, the data
which was generated as part of the D2.3 deliverable (for NodeDB) was immediately relevant for
WP4 (experiments). The data is interestng for researchers to get new insights into a running mesh
network. In additon the Spider data is used when importng the old Funkfeuer redeemer database
into the NodeDB. See also the descripton in the deliverables for WP4.

Currently we ofer node confguraton data from Funkfeuer Vienna and Guif.net in two NodeDB
databases for research purposes, and AWMN data is coming. To import this data, Conversion and
Import (see 3.7) routnes had to be writen. Part of the reason why the programming of the
NodeDB took way longer than expected is the sheer amount of non-uniformity of the existng data
which needs to be converted and imported into the NodeDB. While the NodeDB is rather strictly
typed (for example a MAC address is to be writen in a specifc format xx:xx:xx...:xx (or separated
by dashes ('-')), a lot of the data in the existng community networks is arbitrary and does not ft
into any such strict typing schema. Writng converters for the existng data proved to be man-
months of efort (see also 3.8). In other words, in order to integrate the data of the existng
community networks into the CONFINE testbed and make this data available for researchers,
Funkfeuer had to parse, sanitze and re-parse a lot of the legacy data which exists in the network.

Finally for supportng IP address reservaton (and IP address objects in a relatonal database) and
to address some requirements of the new common API we had to improve the relatonal database

Version 1.0 – 15/09/2013 Page 10

D2.3 System enhancements (Year 2)

back-end (see 3.10) which now supports new query mechanisms and database back-end-specifc
data types.

Version 1.0 – 15/09/2013 Page 11

Figure 2 : An overview of the overall architecture of the NodeDB

D2.3 System enhancements (Year 2)

Figure 3 : Object Model of Common Node Database

3.2. Node Database

During the last reportng period, the object model (see Figure 3) of the node database [FFM] was
updated to refect the necessary enhancements for IP address reservaton and some other
features (as described above). It can be seen from the model that IP addresses (both IP version 4
and 6 are supported) can be assigned to network interfaces. On top of this model, address
reservaton is implemented. There are quite some diferences between diferent community
networks when it comes to address reservaton: some use RFC 1918 private IP space [PrivIP],
others public IP space, others assign subnetworks to nodes. In other words, there is no clear
standard, thus the common NodeDB has to support multple variants which increases the
complexity of the implementaton and the design.

3.3. Common API

Ultmately, we would like to have other community networks interact via a standard common API.
An applicaton could be writen for Funkfeuer and used with the (for example) Freifunk NodeDB.
This standardizaton step is our goal and we made some progress towards this in year 2.

For accessing the common node database an applicaton programming interface (API) was
improved compared to the last report.

The API, which uses a Representatonal State Transfer22 API (REST API) has been extended to
support IP address reservaton and will serve as a basis for defning a common API.

Other API improvements implemented:

• Support for polymorphic atributes23.

• Support for accessing the cooked values of atributes via the REST API.

• Support for accessing meta informaton about enttes, i.e., date/tme and user of creaton
and last change.

• Add response header with link to documentaton of resource.

• Support for accessing the links of an object via the REST API24.

• Implemented a Python module to ease access to the REST API25.

• Support for authorizaton (see 3.5) with REST authentcaton tokens.

3.4. Dashboard

Implementaton of a user-dashboard started. The dashboard serves both as a general web-app for
interactons of end-users with the NodeDB as well as a reference implementaton, showcasing how
the NodeDB can be used for rich single-page web applicatons.

22htp://en.wikipedia.org/wiki/Representatonal_state_transfer
23Support for polymorphic atributes, Christan Tanzer April 2013: htp://confne.funkfeuer.at/2013/04/support-for-polymorphic-
atributes/
24RESTful API improvement, Christan Tanzer May 2013: htp://confne.funkfeuer.at/2013/05/restul-api-improvement/
25REST Client, 2013: htps://github.com/Tapyr/tapyr/blob/master/_GTW/_RST/_MOM/Client.py

Version 1.0 – 15/09/2013 Page 12

D2.3 System enhancements (Year 2)

The Dashboard is built on top of the backbone.js library — a single-page applicaton MVC
framework writen in JavaScript — and bootstrap — a basic CSS library popularized by Twiter. It
thus demonstrates how the NodeDB can be integrated with state-of-the art web technologies.

Several challenges in querying the NodeDB became apparent while developing the dashboard —
this helped to improve the use and test cases for the NodeDB and triggered a change of the SQL
interfacing back-end to allow certain queries.

The dashboard is in a functonal prototype stage right now and is expected to be fnished once the
NodeDB is ready to be used and contains all authentcaton and security features needed.

3.5. Authorizaton

In additon to password-based authentcaton, two new authentcaton mechanisms were
implemented.

Most browsers today support a method of secure — if not very user-friendly — generaton of
client certfcates where the secret key stays with the browser. Since no Python implementaton for
using this mechanism on the server-side (although it exists since Netscape tmes) was available we
wrote a library to support the server-side of using client certfcates, the library pyspkac [pyspkac].

For use by clients of the Common API (see 3.3) the framework was extended to support REST
authentcaton tokens, aka RAT. To get such a token, a client sends a post-request with username
and password to the RAT resource and gets back an authentcaton token that can be used for a
limited tme to authentcate subsequent requests.

The dashboard currently uses REST authentcaton tokens for authentcaton.

3.6. Network Monitoring and Statstcs

Note: since this is also part of WP3, we will only briefy menton it here and describe this later in
the deliverables for WP3. Please note that the monitoring described here refers to the networking
infrastructure and not to testbed nodes, which is described in secton 4.

We started to implement a statstcs server, collectng statstcs from the Funkfeuer network. The
collected statstcs (reachability, routng and topology of the mesh network) help researchers to
beter understand real-life mesh-networks. A graph of the current Funkfeuer topology can be seen
in Figure 4. More topology visualizaton is available in our blog26 and sofware for an interactve
version is available [topo-github].

The implementaton of the statstcs server triggered a privacy and anonymizaton discussion in the
Funkfeuer network that prompted us to work on IP address anonymizaton. One promising
approach was the Crypto-PAn [cryptopan] algorithm.

To integrate the Crypto-PAn algorithm in our sofware we created a Python module: pycryptopan
[pycryptopan]. The module is published with the Python package repository and available for
Python versions 2 and 3. We are especially proud of the fact that afer publishing the source code
for pycryptopan on GitHub the author, Michael Bauer, got immediately patches and feedback from
completely independent and unrelated developers, meaning that this module is already used by a
much wider community than just CONFINE.

26Hackathon blog post, 2013: htps://confne.funkfeuer.at/2013/07/hackathon/

Version 1.0 – 15/09/2013 Page 13

D2.3 System enhancements (Year 2)

Figure 4 : Funkfeuer topology 27

The monitoring via smokeping28 is making nice progress. We are getng access to VMs on diferent
community networks in order to create a looking-glass-like ping monitoring soluton. Alarms work
nicely in the most recent version of smokeping.

3.7. Conversion and Import

As mentoned above, for populatng the node database, importers have been writen to import
data from other sources into the node database.

To eventually switch over from the current Funkfeuer Vienna Node database "Redeemer", an
import for redeemer has been writen. It converts user data, node and device informaton as well
as IP address assignments. Since the current Redeemer database doesn't contain enough
informaton for the new database — notably informaton about wireless interface confguraton is
missing and it is unclear which interfaces that have an IP address assigned belong to which device
— we also rely on OLSR data and data retrieved by a spider (see 3.9) to complement the data in
the redeemer database.

For data of Funkfeuer Graz, an importer was started which has not been fnished. It uses some of
the same libraries for reading SQL dumps and contributed to our lessons learned from importers
(see 3.8).

To make the Redeemer data publicly available for research purposes an anonymizaton opton was
added to not import the personal informaton during database import.

In additon to the Vienna Redeemer database, an importer for a subset of the node data of
Guif.net was writen. AMWN importng stll needs to be done as of today.

Both the anonymized data from Funkfeuer Vienna and a subset of Guif.net data were made
available for research purposes29.

27Visualizing OLSRD topography using d3 blog post, 2013: htps://confne.funkfeuer.at/2013/07/visualizing-olsr-topology-using-d3/
28htp://tunnel.confne.funkfeuer.at/cgi-bin/smokeping.cgi?target=CONFINE_servers
29f-nodedb.funkfeuer.at and guif-nodedb.funkfeuer.at online, Aug 2013: htp://confne.funkfeuer.at/2013/08/f-nodedb-
funkfeuer-at-and-guif-nodedb-funkfeuer-at-online-2/

Version 1.0 – 15/09/2013 Page 14

D2.3 System enhancements (Year 2)

To facilitate updates, an account migraton feature was implemented30 that can port the database
accounts to the new database when new data is imported.

3.8. Lessons learned from importers

For importng from another database, we used the SQL dump of that database. This resulted in a
library, part of [rsclib], that can read SQL dumps (from both PostgreSQL and mySQL) and ofer the
data via a Python API.

When writng importers — for both CNML data from Guif.net31 as well as SQL database dumps for
Funkfeuer Vienna and Graz — we encountered problems with the data ofered. In partcular, non-
sanitzed data (like invalid MAC Addresses) and problems with character encodings.

The problems with character encodings were due to the long usage period of the data in queston
which had encountered changes of character set (from Latn1- to Unicode-based encodings like
UTF-8). Some data was double-encoded. This resulted in a module for the SQL dump reader in
[rsclib] to sanitze the encoding problems.

Another problem when running our importers was the tme it took to complete the data import.
This was traced to large transactons of the underlying SQL database. Some commit statements at
appropriate places in the code improved performance drastcally. So an advice when writng
converters or importers boils down to:

Don't create all objects in a single transacton; commit every now and then.32

3.9. Spider

Originally intended for augmentng the data used by the importer (see 3.7), a spider was writen
that extracts the following informaton from the web-interfaces of the nodes in the Funkfeuer
network in Vienna:

• Version and type of sofware used

• WLAN confguraton (if available): channel, signal, ESSID, BSSID, etc

• Network interfaces and confguraton informaton

• IP Address informaton

The spider can be used on any network that uses OLSR for routng — currently the spider relies on
the OLSR topology data for fnding out from which IP addresses to retrieve data.

Funkfeuer currently uses a mix of diferent hardware and sofware components. The spider can
currently handle the following sofware on devices:

• Freifunk Firmware

• Backfre Vienna

• OpenWRT Firmware

• OLSR "Textnfo" Plugin output

30Account migraton, Christan Tanzer May 2013: htp://confne.funkfeuer.at/2013/05/account-migraton/
31Guif.net CNML Wiki, retrieved 2013-09-09: htp://en.wiki.guif.net/wiki/CNML
32Converter performance, Christan Tanzer Aug 2013: htp://confne.funkfeuer.at/2013/08/converter-performance/

Version 1.0 – 15/09/2013 Page 15

D2.3 System enhancements (Year 2)

The type of frmware running on the device is auto-detected. When testng, the sofware auto-
detected many nodes from the Funkfeuer Graz network (which uses a diferent set of devices from
Funkfeuer Vienna).

We currently spider the network once a day and keep the data retrieved for statstcs on network
parameters. Some of the data will be made available via our Statstcs Server, (see 3.6).

3.10. Improvements to the relatonal database back-end

The NodeDB uses the Tapyr [Tapyr] framework to access relatonal databases. Tapyr in turn uses
SQLAlchemy33 for that task.

During the development of the common node database, we identfed some weaknesses of Tapyr's
SQLAlchemy wrapper. We implemented the improvements:

• Use of database-specifc data types for database columns.

Tapyr now supports the use of RDBM-specifc data-types. For managing IP addresses with
propertes like network ask and contains relatonship we had to extend the Tapyr
framework to support IP network operatons. One of the back-end databases (PostgreSQL)
natvely supports IP address objects while other databases don't. The framework can now
use the natve IP address type if supported by the database and emulate the behavior for
the other back-ends.

The back-ends for both PostgreSQL and SQLite support the same queries, with PostgreSQL
doing most of the work for Tapyr, while the SQLite back-end implements IP address
comparison with complex SQL expressions over the synthetc columns.

• Transitve queries of atributes of joined tables.

Tapyr now supports the defniton of query atributes that resolve to a SQL join of multple
tables. For the common node database, the most important use for transitve queries is to
fnd all objects of a certain type that belong to a specifc node. For instance, to fnd all
antennas belonging to some node a client of the REST API can now use a get request like
this:

htps://guif-nodedb.funkfeuer.at/api/FFM-Antenna?AQ=belongs_to_node,EQ,374

which returns all Antenna instances linked to Wireless_Interfaces connected to
Net_Devices connected to the Node specifed. Because FFM.Antenna is not directly
connected to FFM.Node, multple joins are necessary to fnd the node in queston, resultng
in a select statement looking like:

 SELECT

 ...

 FROM mom_id_entty

 JOIN fm_antenna ON mom_id_entty.pid = fm_antenna.pid

 JOIN fm_wireless_interface_uses_antenna

 AS fm_wireless_interface_uses_antenna_1

 ON fm_wireless_interface_uses_antenna_1."right" = fm_antenna.pid

33htp://www.sqlalchemy.org/

Version 1.0 – 15/09/2013 Page 16

D2.3 System enhancements (Year 2)

 JOIN fm_wireless_interface AS fm_wireless_interface_1

 ON fm_wireless_interface_1.pid

 = fm_wireless_interface_uses_antenna_1."lef"

 JOIN fm_net_interface AS fm_net_interface_1

 ON fm_net_interface_1.pid = fm_wireless_interface_1.pid

 JOIN fm_net_device AS fm_net_device_1

 ON fm_net_device_1.pid = fm_net_interface_1."lef"

 WHERE fm_net_device_1.node = 374

To query Antenna instances belonging to a specifc Person, the client would send a get-
request like (domain elided):

/api/FFM-Antenna?AQ=belongs_to_node.owner,EQ,104

• Polymorphic queries computed by the database itself.

Tapyr supports polymorphic atributes, i.e., atributes that refer to objects of a polymorphic
type. By default, there is no database table for a partal type; a polymorphic atribute
referring to such a type is a foreign key to one of the set of tables corresponding to the non-
partal derived types. Queries for polymorphic types are now completely resolved by the
relatonal database (previously, the results of several database queries needed to be
combined in Python which was quite inefcient if sortng and limitng was involved).

Version 1.0 – 15/09/2013 Page 17

D2.3 System enhancements (Year 2)

4 . Monitoring and self-management

4.1. Motvaton

The monitoring system34 is designed specifcally to monitor actvity on research devices of the
Community-Lab testbed. Monitoring the testbed presents specifc challenges in the form of large
scale of infrequently-used data. The monitoring system should support actve measurements that
provide insight into the functoning of nodes without revealing too much informaton of what is
running on it, gather slice and sliver specifc informaton and should be fexible enough to add new
metrics without hampering the functonality. Monitoring logs should never lose precision and
should support passively measured data such as last-tme ssh succeeded, number of ports in use,
resource hogs (which experiments are using the most CPU, memory, bandwidth and ports).

A general purpose monitoring system does not meet these special purpose requirements of
Community-Lab and are meant for diferent workloads and propertes. Slice-specifc and sliver-
specifc informaton (LXC monitoring) cannot be obtained directly by any of the existng
monitoring systems. Nagios, Zenoss, ntop, Ganglia and Cact use the RRD tool for storing data.
RRD is great for storing tme series data and aggregatng informaton, but it is quite infexible. It
becomes necessary to compromise between fexibility and efciency.

Adding new metrics would require updatng the database fle. Once an RRD is created, it is
possible to change existng values and add new data sources, it is not possible to add or remove
metrics and change their propertes. If modelling of data is not considered carefully, it can lead to a
number of updates as and when new slivers are created in a node. Slice-specifc data implies data
from diferent nodes and would result in a dynamic list of RRD which in turn would need
additonal scripts to fetch, aggregate and display data. For instance in Comon (monitoring system
of PlanetLab [PlanetLab]), the data model is carefully chosen, but stll old database fles are
deleted when the format changes. In many cases (depending on confguraton) if an update is
made to an RRD series but is not followed up by another update soon, the original update will be
lost. This makes it less suitable for recording data such as operatonal metrics. There is no way to
back-fll data in an RRD series and depending on the data model, a single RRD receiving data from
multple sources can be afected by this. Given the large scale varying resource consumpton and
the dynamic nature of Community-Lab, fexibility is a key requirement. Apart from that, sliver-
centric informaton is not easily integrated into node-centric data provided by of-the-shelf
monitoring systems. This kind of data gathering is an important motvaton for developing a
separate monitoring system to meet the specifc needs of Community-Lab.

34htps://github.com/navaneethrameshan/

Version 1.0 – 15/09/2013 Page 18

D2.3 System enhancements (Year 2)

4.2. Design

At a high level, the monitoring system consists of a monitoring daemon running on each research
device, a centralized data gathering and processing infrastructure and a display facility. The
daemon running on the research device provides node-centric data including sliver specifc
informaton, and it monitors periodically (e.g. every sixty seconds). It accepts HTTP requests and
responds with HTTP responses, to allow them to be accessed from web browsers in additon to
being used with automated systems. The response is provided in JSON format to allow researchers
to query and use monitored data. The daemon stores the monitored informaton in a fle locally
untl the data gathering service has seen it. This ensures that no monitored informaton is lost
during a network partton and helps researchers diagnose any problem that may have happened
during this period.

While the daemons operate on research devices, the data gathering and processing operates on a
properly-provisioned machine. Data is collected from the daemons using a pull model and is
fetched every 5 minutes. All fetches are performed in parallel to reduce latency. Slice centric
informaton is generated by analysing the node centric logs and is stored in the database.
Additonally informaton is aggregated and summaries are provided at a granularity necessary to
make meaningful inference from the data. Precision of the monitored informaton is never lost and
it supports data ofoading which is then provided as an open data-set.

Monitored informaton is reported via a web interface that supports sortng, and shows graphs of
historical data (see fgure 6). The reportng currently covers OS-provided metrics and metrics

Version 1.0 – 15/09/2013 Page 19

Figure 5 : The list of node status

Figure 6 : Historical data for a specific parameter for a node

D2.3 System enhancements (Year 2)

synthesized from other sources on the node. The system reports the following OS-provided
metrics: uptme, CPU utlizaton, memory utlizaton, total memory, disk size, disk space available,
1 minute load, network data sent and received. Synthesized data includes last tme the monitoring
daemon on the research device was seen, open ports, ping status and slice centric informaton.
The system maintains only a manageable set of metrics that help the researchers get insight of any
strange behavior in a given node (see fgure 5). To facilitate the researchers in selectng nodes to
run their experiments the web interface provides a Treemap view of all the nodes (see fgure 7)
based on the historical trend (customizable) of resource usage.

Version 1.0 – 15/09/2013 Page 20

Figure 7 : A Treemap view of the historical data for all nodes

D2.3 System enhancements (Year 2)

5 . Sofware-defned networking

Working with the CONFINE sofware collecton we encountered the need to allow researchers to
perform L2 experiments. In order to achieve that goal we would need a way to perform L2
topology virtualizaton and thus present to the researchers not a low level API but a set of abstract
and manageable L2 resources. In spite of the wide variety of ways to achieve L2 topology
virtualizaton, the most prominent approach is the one of Sofware Defned Networking35 (SDN).

Network resource virtualizaton using SDN ofers more benefts than simple resource handling.
The SDN community is working on a complete networking soluton where besides resource
virtualizaton, users will be provided with a confguraton and management plane. For these
reasons we decided to extend the CONFINE testbed with a platorm for L2 experiments36 using the
OpenFlow SDN protocol [OpenFlow].

The implementaton consists of two main components:

1. A proxy for the POX OpenFlow controller37 which is located in the research device and plays
the role of a local OpenFlow proxy.

2. A sofware component that integrates POX with Django38 in order to provide a UI through
the CONFINE testbed server web UI.

The L2 SDN experiment platorm is not yet fully integrated with the CONFINE testbed but it will be
available in the near future. This efort is also described in the paper “Sofware Defned
Networking for Community Network Testbeds” published in the internatonal workshop on
Community Networks and Botom-up-Broadband, part of the WiMob 2013 conference.

35htp://en.wikipedia.org/wiki/Sofware-defned_networking
36htp://wiki.confne-project.eu/sof:sdn
37htp://www.noxrepo.org/pox/about-pox/
38htps://www.djangoproject.com/

Version 1.0 – 15/09/2013 Page 21

D2.3 System enhancements (Year 2)

6 . cOntrol and Management Framework (OMF)

By integratng the cOntrol and Management Framework (OMF) (5.4) [OMF] in CONFINE
testbeds39, experiments on the CONFINE testbed can be described in one single experiment fle.
From the moment the researchers feed the experiment fle to the OMF Experiment Controller
(OEC), the OMF integraton takes care of everything. From a researcher's point of view, no
interacton with the CONFINE testbed is required anymore: this allows researchers to focus on the
experiment rather than on how to execute their experiment on the CONFINE testbed.

By using the CONFINE REST API, the OMF Aggregate Manager (OAM) communicates with the
CONFINE server to check for available resources and to make necessary resource allocatons (i.e.
sliver allocaton on the available nodes). When the experiment is fnished, results can be fetched
by using the OML measurement library — by default — provided by OMF.

39htp://researchinternship.blogspot.com.es/

Version 1.0 – 15/09/2013 Page 22

D2.3 System enhancements (Year 2)

7 . D L E P

The CONFINE Test-Infrastructure is mostly about testng in Community Mesh Networks, which use
wireless links to connect the nodes of the network with each other. This means that quite a few
experiments will need IP and link layer informaton about the trafc on the wireless interfaces,
including link layer metadata like signal strength or transmission speed.

In additon CONFINE research nodes are built to be integrated into existng networks, which are
used by the Community partcipants for their own communicaton, both local within the Mesh and
with the Internet.

Because of this, it is not feasible to give researchers direct access to Wi-Fi hardware and its
confguraton. The CONFINE research node must make sure that experiments stay within the
defned restrictons and conditons agreed on with the local Community to preserve the privacy of
the network partcipants and prevent experiments from disruptng the Community Mesh itself.

CONFINE uses a prototype of the Dynamic Link Exchange Protocol (DLEP) of the IETF Manet
Group to deliver link layer data from the operatng system to research nodes while separatng
them from the real control interfaces.

7.1. DLEP development

DLEP is stll in actve development in the IETF Manet Group, the protocol draf has yet to stabilize
and fnd consensus about the content of the draf. Most of the CONFINE work on DLEP has been
done by partcipatng in the Manet Group to make sure that the protocol will be fexible enough
for usage both with modern Sofware Defned Radios and with the low-cost hardware used by
most Community Mesh Networks.

The IETF meetng in Berlin ended with the creaton of a small DLEP research team, which is
collectng a larger set of link layer metrics from several people including CONFINE members.

There has also been an announcement of a 5th revision of the DLEP draf, which should be stable
enough that CONFINE can start working on a standard-compliant implementaton of DLEP.

7.2. CONFINE DLEP implementaton

The CONFINE DLEP implementaton is made from a group of plugins that are atached to a
lightweight link layer database. This plugin design allows to adapt the implementaton to diferent
use-cases without modifying the code base.

The DLEP implementaton has several plugins that gather link layer data and enter it into the
database, either by querying the operatng system about data of a local network interface (Wi-Fi,
Ethernet) or by importng statc data from a confguraton fle.

The core of the DLEP protocol itself is a pair of plugins (DLEP service and DLEP client) which can
mirror the content of this database over an IP network between two devices. This can allow a
research node to gather and process link layer data of hardware that is part of a diferent device,
e.g. the atached Community Mesh node or an external radio connected by Ethernet. The client
plugin also has the capability to automatcally detect the presence of service devices on the local
network, which should allow plug-and-play extension of Community Mesh Nodes with external
radio devices in the future.

Version 1.0 – 15/09/2013 Page 23

D2.3 System enhancements (Year 2)

The informaton gathered by the plugins, directly from the local hardware or over DLEP from
remote hardware can then be either processed on the applicaton itself (e.g. for a routng metric)
or can be supplied to other processes by diferent interfaces. The DLEP implementaton has a
plugin to export the content of the link layer database in text or JSON form for this.

Version 1.0 – 15/09/2013 Page 24

D2.3 System enhancements (Year 2)

8 . Conclusions

This document presents an update of the architecture, design and development of the CONFINE
testbed sofware system done during the second year of the project. It builds on the work
reported in D2.1 during the frst year of the project.

The improvements and extensions afect diverse aspects:

• The testbed controller: a tcket system for tracking issues with the testbed, monitoring of
network connectvity, executon of operatons in multple nodes at once, improvements in
the REST API for resource list fltering and updates in its architecture, structure and
modularizaton, compliance with standards

• Design and development of a Common NodeDB for planning common, shared resources in
a community network. The system can also import data from the current FunkFeuer
database and also from the Guif CNML data.

• Design and development of a new testbed monitoring system that collects node, sliver,
slice and experiment metrics and accumulates a metrics history. This allows to assess
individual and aggregated resource usage to select resources for experiments, analyse and
detect anomalies in the operaton of the testbed.

• Design and prototyping of a network (L2) topology virtualizaton prototype for experiments
and thus present to the researchers a set of abstract and manageable L2 resources.

• Further steps in the integraton of OMF with the testbed controller.

• Extensions and reimplementaton of part of the node sofware following the controller API,
with tools for monitoring and upgrading nodes.

• Evoluton of the DLEP implementaton for the testbed, providing researchers access to WiFi
hardware and its confguraton, according to the IETF Manet WG.

• Evoluton of the virtual testbed (VCT) with containers that can run natve node images,
which provides a more faithful environment for testng and quality assurance.

This set of sofware developments with new and redesigned features can be found in the project
repository at htp://redmine.confne-project.eu. This new sofware combined with the contnuous
efort of integraton, testng and maintenance has contributed to increase the stability, usability
and functonality of the Community-Lab and the virtual (VCT) testbeds for research experiments.

Version 1.0 – 15/09/2013 Page 25

http://redmine.confine-project.eu/

D2.3 System enhancements (Year 2)

9 . References

[cryptopan] Crypto-PAn Cryptography-based Prefx-preserving Anonymizaton:
htp://www.cc.gatech.edu/computng/Telecomm/projects/cryptopan/

[FEDERICA] FEDERICA, Federated E-infrastructure Dedicated to European Researchers Innovatng in
Computng network Architectures: htp://www.fp7-federica.eu/

[FFM] Common Node Database, 2012-13: htps://github.com/FFM/FFM

[OMF] The cOntrol and Management Framework: htp://mytestbed.net/

[OpenFlow] OpenFlow: htp://www.openfow.org/

[OpenWrt] OpenWrt: htps://openwrt.org/

[PlanetLab] PlanetLab, an open platorm for developing, deploying, and accessing planetary-scale services:
htps://www.planet-lab.org/

[PrivIP] “Address Allocaton for Private Internets”, IETF RFC 1918: htps://www.iet.org/rfc/rfc1918.txt

[pycryptopan] A python implementaton of Crypto-PAn a IP anonymizaton ¡algorithm:
htps://pypi.python.org/pypi/pycryptopan

[pyspkac] Support for Netscape / HTML5 SPKAC client certfcate request:
htps://pypi.python.org/pypi/pyspkac

[rsclib] rsclib: Utlity Routnes, Ralf Schlaterbeck 2004-13; rsclib: Utlity Routnes:
htp://rsclib.sourceforge.net/

[Tapyr] Tapyr Framework, 2008-13: htps://github.com/Tapyr/tapyr

[topo-github] Visualizing OLSRD topography using d3 Sofware distributon, 2013:
htps://github.com/FFM/d3topo

Version 1.0 – 15/09/2013 Page 26

https://www.ietf.org/rfc/rfc1918.txt
https://www.planet-lab.org/
https://openwrt.org/
http://www.openflow.org/
http://mytestbed.net/
http://www.fp7-federica.eu/

The CONFINE project

September 2013

This document is licensed under the following license:

CC Atributon-Share Alike 3.0 Unported

<htp://creatvecommons.org/licenses/by-sa/3.0/>

CONFINE-201309-D2.3-1.0

	1. Introduction
	1.1. Contents of the deliverable
	1.2. Relationship to other project deliverables

	2. Core testbed components
	2.1. REST API
	2.2. Testbed controller
	2.2.1. REST API Resource List Filtering

	2.3. Node software
	2.4. Virtual CONFINE Testbed (VCT) and VCT container
	2.5. Testing the system

	3. Common NodeDB (user interface/admin interface)
	3.1. Overview
	3.2. Node Database
	3.3. Common API
	3.4. Dashboard
	3.5. Authorization
	3.6. Network Monitoring and Statistics
	3.7. Conversion and Import
	3.8. Lessons learned from importers
	3.9. Spider
	3.10. Improvements to the relational database back-end

	4. Monitoring and self-management
	4.1. Motivation
	4.2. Design

	5. Software-defined networking
	6. cOntrol and Management Framework (OMF)
	7. DLEP
	7.1. DLEP development
	7.2. CONFINE DLEP implementation

	8. Conclusions
	9. References

