/ CONNECTED COMMUNITIES

% CONFINE

System enhancements
(Year 2)

Deliverable D2.3

Date: 18th September 2013

Version: 1.0

»

€ S

o~

Editor:
Deliverable nature:
Dissemination level:

Contractual Delivery
Date:

Actual Delivery Date
Suggested Readers:
Number of pages:

Keywords:

Authors:

Peer review:

Lorena Merino, lvan Vilata
Report (R)

Public (PU)

15/11/2013

20/09/2013

Project partners
27

Software, node system, tools, services

Marc Aymerich, Axel Neumann, Ivan Vilata (Pangea).

Bart Braem, Glenn Daneels (iMinds),

Leandro Navarro, Manos Dimos, Navaneeth Rameshan (UPC)
Henning Rogge, Anne Diefenbach (Fraunhofer FKIE)

Ralph Schlatterbeck, Aaron Kaplan (Funkfeuer)

Pau Escrich (Guifi)

Leandro Navarro, Roc Messeguer (UPC)

Abstract

This document presents an update of the architecture, design and development of the CONFINE
testbed software system done during the second year of the project. It builds on the work
reported in D2.1 during the first year of the project. The software can be found in the project
repository at http://redmine.confine-project.eu.

http://redmine.confine-project.eu/

. ": [|

L LT O 0 U O i 00t ettt ettt et ettt e et e e ee e e ee et e e et e e e e e e et e e e e e e e s se e e e e e et e s ee s seeaneeaseenseerannns 5
1.1, Contents Of The deliverabl .. i i iueeun it iiiiittu s st eeettees s teseeeeesssseseeesesensnsssseeeeeesnssteseereeesnnnsssseeee 5
1.2. Relationship to other Project deliVeralles . v, i iiiieiittesstttessteetessseeresssrersssstereentereessteresnsseeaens 5
2. COre TeSTD O COMIDONENES . i iuuuuueitiiiituutnetttettttenneesseetetusenntessesesenssnssteseeessssnnseeseeeesnsnnnesesseeesssnnssss 7
2 0 RE ST A Pt iiiiitut e iii ittt ittt et eeeeeeeee e e eeeeseeee e eeeeseeeesse e eeeeeeeeeee e eeeeeeeee e eeteeettne s teeserarernanaaans 7
2.2, O ST O CONTIO N Ol it tu ittt tttite et ettt e teete s eeeees s eeees e ee et e e e e et e e e et e e e et eee e sses e e ssessnnsseessnnsssees 7
2.3 N OO O SO G ittt ittt teeteuteeeeeeeeeee e teee e eeee e e eee e et eseee et eee et eee e e e eees e eeeee e teses e sesantsesanaseesennsns 9
2.4. Virtual CONFINE Testbed (VCT) and VCT CONTAINMOT tiuuuuniiiiitenieteeteesaeieeeeesssieereenssseeeeeeneeeeeeennns 9
2.5, TSN TN SV SOt iitueititesteten e teee e te et e e eee s e e teese e eeee et eee e eeee et eeeenesese s eteseaneteernnssseeenseeeennnns 9
3. Common NodeDB (user Interface/admin INterface) .. . ittt eeeseeeeeeeeeseeeeeeeeees 10
3.0, OV IV W . euut ittt ittt ittt e ettt seet e eese et ee e e ee s eesat s e e se s ee e ee e seeaeeeanessanssansssnnasnnessnsssnnssrnnssann 10
3.2, N OO DatA08 S0t itiiuutttitn ettt it e teete e eete e tetes e eee e e seee e ees s eeee e esese s eesesenneteeeensserenatenennsseernnnes 12
3.3, COMMION AP ..ttt i ittt ettt ettt teeaeeen e eeasseeasseenessansseansssassesnsssansssnnssenssesnsseanssennssennssnnsssnnns 12
3.4 DA DO 0 ittt ittt ettt teitietettaetesssitessssteesssseesssstesssseesssseesssiesesssstessssesssssieesessstessessesessas 12
3.5, AU O T 2Ot 0N ettt iiititets sttt ettt eseeeetetansneeseseeeesennnassseessenssnnsssssssssnsnnasssseessnsnnnssseeseesesnnnnnssas 13
3.6. Network Monitoring aNd StatiStiCS . uuueu. i iiiiiuuesieeiiieueneseeetteeenereeeeeresnneeeseersseseseeesersnnnesseseessnnnns 13
3.7. CONVEIrSION @NA M DO, i iiiuuuiiiiititiiitntetiutssettessssetessaestessseseannsesesssssesessssesassessessssesesnnnesesnnnasns 14
3.8. LessoNs 1earned frOmM iM DO S . uuu e iitieiiiteetueeeeeseeeteeesnseesteseeetrsnnnnseesssesetesnnnnneessseseeeesnnnnnnsens 15
3.0 S DI et iiitutitttuu st ettt et ettt et ettt e eee e e ee et ee e eeen e eeeaaeeeenneeeean e eean et eeea et e ten s tsbaneseranaas 15
3.10. Improvements to the relational database back-eNnd....ccccceeeiiiiiiiiiiiiiiiiiiiiiisiiiiiiieesseeeeieennanaes 16
4. Monitoring ANd Sl - AN a O N s iie ittt ittt sttt ttetee s teeeesseeeensesesensteeeassseeessteeessseeeeastserenseseanns 18
L Vi Lo 1 Y= oY o VT TP TP T T T TP r T T TP PP 18
L D I it iitutetu e teu ettt et eeee et ee e ee e ee e et e e e e ee et eee e ee e ee e ee e eatesa e eanttennteenteraseenrsanrees 19
5. Software-defiNne@d N ETWOIKIN . ..o iiiiiueeeitiititieusiestsettteeeneeeseseteennnsstesseeesnnnnsseeseesusnssassseeesesnnnassss 21
6. COntrol And Management FrameWork (O M) .. i s ietttieee e etteeeteeesaaeeeeeereeennasasereereeenasaeas 22
7 D L E Pt iiiiiutt ittt ittt et eetet ettt eeeettntseeeeeete et teeeeeenne e eeeseeenneeteeeeees e teesesenn e tttesatan neastasreernnas 23
7. L. D LE P VO O O N ittt i ittt e sttt eee e e te et e see e eeeseaseeeeee s eeeen s eeseee s aeeese e eteenneterenneeennnntennnnnes 23
7.2. CONFINE DLEP im D e e ntatiom .. e eeieesiieienseteteesssetsseseeeesesesensseeeessstesessaseerensseneeseserenssseeennssss 23
S GO C U ST DM S ettt ettt teetessteeees s eetes e ee e e s e e et s e e e s e e e e e e e e e e e s e e s eesan s seean s eeennsserannnses 25
O, RO O O C S . sttt it it ettt te e tee et etete s e eeee e seee e e eet e e ses s eeee e eeee e se s eee e eeennaeeee s eteennseernnnserannes 26
Figures
Figure 1: Models And Relationships 1N Djang0 iuuuiiiuiiiiiiiueiiiuunereieesnseeiesneseeesnseseesneseeeesnseesennseeees 9
Figure 2: An Overview Of The Overall Architecture Of The NOdeDBiiieuiiiieiiiiiiieiieeenaieeanaeeennes 11
Figure 3: Object Model Of ComMMON NOJE Datalbase ... iiiueuiiiiieniieirensreeeesssrereesssreeresseseeesnreeeeanssee 13
Figure 4: FUNKIEUET TOPOIO@Y . uuuuuniiiiiiiiiiiieeeiiiieiieuusuesssseeseesensnnnsstesssesesnssssstesesessssnnnnnsteseesesnsnnnnssssseeee 16
FIigUre 5: The LiSt Of N OO @ StatlS . iiuuutiuentitensssetensteresseeeessesessssesenssesessseresssterensteeessttersssteressererennss 21

Figure 6: Historical Data For A Specific Parameter FOr A NOde......cccoeeiiiiiiieniiiiiiiiiessiiiiiinieieeieennnnses 21

< .‘P

Figure 7: A Treemap View Of The Historical Data For All Nodes

Tables

1. Introduction

1.1. Contents of the deliverable

This document presents an update of the architecture, design and development of the CONFINE
testbed software system done during the second year of the project. It builds on the work
reported in D2.1 during the first year of the project.

The description of work document for CONFINE mentions this deliverable as instrumental to
reflect progress in the following items:

In Indicators or advance over the state of the art:

“That work will be performed and revised over the 4 yearly iterations of the testbed in task
T2.4. Revisions to the software will be released on D2.3 (M24), D2.5 (M36) and D2.7
(M48).”

“Software components that implement proposed algorithms and integrate them into the
management frameworks are defined in T2.3 and delivered in D2.3 (M24), D2.5 (M36) and
D2.7 (M48).”

“Software tools for implementing self-management actions for the automation of the
testbed, dealing with the interrelated problems of distributed (global) allocation of
channels, IP addresses, IP ranges, routes, routing domains. These tools will be integrated in
the enhancements to the management tools and services and the embedded system
software developed in T2.4 and delivered in D2.3 (M24), D2.5 (M36) and D2.7 (M48).”

As part of T2.2, this deliverable is described as:

“The enhancements of tools and services, and the update of embedded node system will be
reported in D2.3 (M24) (software and documentation), D2.5 (M36) (software and
document), D2.7 (M48), describing in detail the problem addressed and the developed
solution. D2.7 (M48) will be the final software system and a complete report of the final
system.”

This document comprises the following topics:
* A description of the software developments in this period

¢ Links to the online documentation® and the software repository?.

1.2. Relationship to other project deliverables

D2.1 Initial system software and services of the testbed — M12: A report that describes the
software to construct the testbed developed during the first year. D2.3 updates D2.1 and describes
the new developments in year 2.

D2.2 Initial software system for the testbed (nodes, services) — M12: A snapshot of the
developed software (D2.1) at month 12. The latest version of the software can at any time be
downloaded from the publicly accessible CONFINE repositories (http://redmine.confine-
project.eu). D2.2 contains the implementation of the software system described in D2.1. D2.3

! Project wiki: http://wiki.confine-project.eu
? Project software repository: http://redmine.confine-project.eu

http://redmine.confine-project.eu/
http://redmine.confine-project.eu/

< I

T &
includes a reference to the updates in the CONFINE software during the second year of the
project.

D2.6 Implementation of federation mechanisms for community networks — M24: Describe the
federation mechanisms explored in the CONFINE project which are used to interconnect the
diverse community networks involved in the project. D3.2 uses these concepts.

D3.1 Operation and support guides of the testbed — M12: The CONFINE project deploys its
testbed for community networks called Community-Lab?, and a virtual local testbed (VCT), which
are based on the CONFINE testbed software system developed in WP2 and presented in D2.1 and
D2.3. D3.1 therefore describes the testbed that instances the CONFINE testbed software system
described in D2.1. D3.2 builds and refines D3.1.

D3.2 Initial management guide of the testbed — M24: Describes how the software developed in
the two years of the project is used to provide an operational testbed for researchers. This is based
on the software reported here.

D4.1 Experimental research on testbed for community networks (year 1) — M12: D4.1 reports on
experimentally driven research that was carried out to support the development of the CONFINE
testbed software system. The interaction between WP2 and WP4 was bidirectional. The
development of the testbed required looking at options beyond the limits of the current state-of-
the-art. Work of WP4 also comprised a review of research topics relevant for community networks
in order to identify use cases to be taken into account in the architecture and design of the
CONFINE testbed software system. D4.1 therefore contains research work that contributed to the
development of the CONFINE testbed software system.

D4.8 Tools for experimental research (year 2) — M24. Similarly to D4.1 it reports on the research
activities in the second year of the project. Several activities have used the CONFINE testbed.

D5.1 Dissemination, training, standardization activities in year 1 — M12: This deliverable reports
on the interactions the CONFINE project had with different stakeholders in many kinds of events.
While on one hand the CONFINE project was communicated to third parties, CONFINE also
received valuable external feedback, which also contributed to the development of the CONFINE
testbed software system reported in D2.1 and here.

D5.4 Dissemination, training, standardization activities in year 2 — M24: Similarly to D5.1 it
reports on the dissemination, training and standardization activities in the second year of the
project.

® http://community-lab.net/

2. Core testbed components

2.1. REST API

Besides reflecting architectural updates resulting from the stabilization and testing of CONFINE
code (including the complete definition of users, groups, roles and permissions), the CONFINE
REST API* has become more structured and modularized to better encapsulate separate
subsystems (community network, management network, tinc VPN backend). It is also more
standards-compliant (JSON pointer, JISON patch, HTTP headers) and RESTful (e.g. use URIs instead
of numeric resource identifiers) with enhanced browseability.

2.2. Testbed controller

The CONFINE controller® is a software package used for managing CONFINE testbeds. It provides
users with a web interface as well as a REST API, allowing them to create and manage slices of the
testbed.

Additional extra functionality has been added besides the core components for managing nodes
and slices. A ticket system has been developed as part of this software package allowing
researchers, technicians and testbed operators to report and track all kinds of testbed related
issues. Feedback from the testbed components is now provided by the controller through periodic
monitoring of the node state as well as monitoring the management network connectivity of
different components (nodes, slivers, hosts). Finally mechanisms for centralized node management
have been put in place in order to ease the maintenance of large scale testbeds by enabling the
execution of operations in multiple nodes at once.

2.2.1. REST API Resource List FiLTERING

The CONFINE controller REST API® allows listing resources; for example, calling
https://panel.community-lab.net/api/nodes/ will give a list of all nodes registered to the controller.
Since depending on the size of the testbed, this list can get very long, the APl defines, among
other possibilities, a format for filtering this list server-side’. The requirement is that a key-value
pair consisting of a JSON pointer® and a matching value be passed in the URL to serve as filters:
e.g. https://panel.community-lab.net/api/nodes/?/slivers/slice/id=60, with /slivers/slice/id being
the pointer relative to the objects in the list (i.e. the nodes) and 60 the value, would return all
nodes who have slivers belonging to the slice with ID 60. The JSON pointer may contain one or
more wildcards consisting of an underscore (_), each representing a reference token in the pointer.
https://panel.community-lab.net/api/nodes/?/slivers/ /id=60 would be an example of a query
containing a wildcard, and it would return all nodes that have slivers which belong to, refer to or
contain any element — such as the sliver’s slice, the node, the template — with ID 60.

The CONFINE controller is implemented using the web framework Django®. The Django REST filter
package'® does not cover this use case, so it had to be implemented specifically for the CONFINE

*http://wiki.confine-project.eu/arch:rest-api

*http://wiki.confine-project.eu/soft:server

®https://wiki.confine-project.eu/arch:rest-api. Last accessed 1st August 2013
"https://wiki.confine-project.eu/arch:rest-api#filtering. Last accessed 1st August 2013
®http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-03. Last accessed 1st August 2013
*https://www.djangoproject.com/. Last accessed 2nd August 2013
http://django-rest-framework.org/api-guide/filtering.html. Last accessed 2nd August 2013

«.;, [|
project. The JSON pointer query has to be translated into a query the Django query filtering
mechanism'! can understand. This is fairly straightforward for a query without wildcards — all that
needs to be done there is to change the slashes (/) to double underscores (__); the relationship
between the reference tokens is processed by Django. Processing a wildcard is more complicated
because it is necessary to find all possible members which fit the wildcard(s). Following the pointer
reference tokens and the Django objects or models they represent one by one allows us to first
validate the path up to the wildcard and then get the candidates for the wildcard. To achieve this,
we use the internal Django meta functionality which allows introspection of Django models. This is
complicated by the way Django differentiates between foreign key fields, many-to-many fields,
one-to-one fields, and what we will here refer to as simple fields®, as well as the fact that,
intended as they are for internal use, the Django meta functionalities are barely documented®. As
a result, trial-and-error is the only way to find out which function accesses which sort of field and
how to get the related model, for which there are at least two methods depending on the
relationship. Moreover, foreign key relationships, such as are used to model the way a slice
consists of slivers and a sliver belongs to a slice, must be declared on only one model of the two
models involved — in our case on the sliver. The fact that a slice contains slivers is hidden in the
metadata. Since we need to discover the existence of such an element, the usual way to access
such backwards relationships™* is useless to us. And once a way to access these related elements is
found, we need to make sure we do not create an infinite loop between a foreign key and a reverse
foreign key in case the query contains two back-to-back wildcards. Figure 1 shows how to access
simple and foreign key fields. name is a simple field whose model is the one containing it. template
is a foreign key field with model Template. slivers is a RelatedObject representing the backwards
foreign key slice of model Slice contained in Sliver. Many-to-many related objects have to be
accessed separately; they are retrieved with model._meta.many to_ many and
model._meta.get_all_related_many _to_many_objects() respectively.

Model

Slice

obj = model._maeta fields obj = model._meta fields
model = obj.rel.to T meodel = this.model
Foreign Key obj = model._meta.gel_all_related_objects() Simple Field
miodel = obj modal >
template: Template name:CharField

slivers
Foreign Key

slice:Slice

)

Maodal

Sliver

Figure 1: Models and relationships in Django

Once we have found all wildcard candidates including the related objects, they need to be
validated against the rest of the pointer and the possibility of converting the query value to a
matching type. All paths which pass these checks are transformed into queries for the Django
filtering mechanism. Since we want to display the results for all these queries together, we need to

"https://docs.djangoproject.com/en/dev/topics/db/queries/#retrieving-specific-objects-with-filters. Last accessed 2nd August 2013
Lhttps://docs.djangoproject.com/en/dev/topics/db/models/#fields. Last accessed 2nd August 2013
Bhttps://readthedocs.org/projects/django-model-_meta-reference/. Last accessed 2nd August 2013
Y“https://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects. Last accessed 2nd August 2013

« I

T B
use Q objects which allow more complex lookups such as the logical OR combination of querysets
which we need here.

The possibility of combining queries using the ampersand (&) remains. For the Django filtering
mechanism, this means that each resulting queryset is filtered again by the following query. This is
a logical AND combination of the querysets.

2.3. Node software

Major parts of the CONFINE Node System™ (initially based on the “A hack” milestone) have been
extended and re-implemented to conform with the long-term- and polling-based CONFINE API
(“Bare bones”). This implementation is now used productively in the Community-Lab CONFINE
testbed. To cope with ongoing and future system developments and fixes, mechanisms have been
integrated to monitor currently installed software versions, detect abnormal node behavior, and
upgrade nodes at different levels ranging from full system re-installations to life updates preserving
currently running experiments®®.

2.4. Virtual CONFINE Testbed (VCT) and VCT container

With the inclusion in the Virtual CONFINE Testbed® (VCT) of controller software, VCT has become
the recommended entry point for new users, since it offers an environment that closely resembles
a real CONFINE testbed. The VCT container'® provides a packaged VCT for further ease of use.
Also, VCT now supports native node images for virtual nodes, which provides a more faithful
environment for testing and quality assurance.

2.5. Testing the system

For the time being, the only automated testing is carried by a continuous integration server®

based on Jenkins®® which checks that node software can be built. The rest of the testing is still
done manually, with node software tested under the Virtual CONFINE Testbed® (VCT)
environment and then on real hardware, and controller software tested under VCT and then on a
sandbox testbed with real nodes.

Bhttp://wiki.confine-project.eu/soft:node-system-bare-bones
®http://wiki.confine-project.eu/soft:node-upgrade
Yhttp://wiki.confine-project.eu/soft:vct
Bhttp://wiki.confine-project.eu/soft:vct-container
Bhttp://builds.confine-project.eu/jenkins/
®http://jenkins-ci.org/
Zhttp://wiki.confine-project.eu/soft:vct-container

3. Common NodeDB (user interface/admin interface)

3.1. Overview

For community wireless networks (CWNs), a node database serves as a central repository of
network information. This “registry” functionality is separate from the testbed controller, which is
described above. The testbed controller manages the CONFINE testbed and the experiments
(creation of slivers, slices, etc). In contrast to this, the common NodeDB manages the network
information per se for the community network. It is a registry, a link planning tool, an IP address
assignment tool, etc. It comprises information about nodes deployed at certain locations, devices
installed at these locations, information about internet addresses, and — in networks that use
explicit link planning — links among devices.

All this information is maintained via a web or REST interface by the community members.
Therefore the common NodeDB contains the static as well as the dynamic information about the
community network as opposed to the experimental testbed network information. It is easy to see
that a node database is a central component of any community network. Usually community
networks thrive to be decentralized, however there are a few centralized components which
cannot easily be distributed: IP address assignment and information on optimal channel
assignments. It helps to have tools such as the NodeDB for planning these common, shared
resources in a community network.

During the last reporting period work on a Node Database (see 3.2) and the Common API (see 3.3)
continued. An application that already uses the prototype of this API, the Dashboard (see 3.4) is
intended to display all information a user needs and allow easy maintenance of node information.
It integrates both static information (node and device data, IP allocation) and dynamic
performance data. It will probably be integrated with our Monitoring and Statistics (see 3.6). For
the web-interface as well as the Dashboard, two new Authorization (see 3.5) mechanisms were
implemented.

The Statistics Server and the Spider (see 3.9) collect data from a running network. Thus, the data
which was generated as part of the D2.3 deliverable (for NodeDB) was immediately relevant for
WP4 (experiments). The data is interesting for researchers to get new insights into a running mesh
network. In addition the Spider data is used when importing the old Funkfeuer redeemer database
into the NodeDB. See also the description in the deliverables for WP4.

Currently we offer node configuration data from Funkfeuer Vienna and Guifi.net in two NodeDB
databases for research purposes, and AWMN data is coming. To import this data, Conversion and
Import (see 3.7) routines had to be written. Part of the reason why the programming of the
NodeDB took way longer than expected is the sheer amount of non-uniformity of the existing data
which needs to be converted and imported into the NodeDB. While the NodeDB is rather strictly
typed (for example a MAC address is to be written in a specific format xx:xx:xx...:xx (or separated
by dashes ('-')), a lot of the data in the existing community networks is arbitrary and does not fit
into any such strict typing schema. Writing converters for the existing data proved to be man-
months of effort (see also 3.8). In other words, in order to integrate the data of the existing
community networks into the CONFINE testbed and make this data available for researchers,
Funkfeuer had to parse, sanitize and re-parse a lot of the legacy data which exists in the network.

Finally for supporting IP address reservation (and IP address objects in a relational database) and
to address some requirements of the new common AP| we had to improve the relational database

»

-1»

D2.3 System enhancements (Year 2)

back-end (see 3.10) which now supports new query mechanisms and database back-end-specific

data types.

1 1
Server ue
Configuration et
Generator
bind, asterisk, apache
smokeping, icinga, ...

Firmware

Generator
OpenWRT, Air0s, ..

MAP

Create/Update Modes
Show Modes and Links

Visualize Statistics
(chefault route, bandwith, ...)

Uy resylis

whois service Registries
nodes | insert |
{Geo-Locations, IP, DNS, uposts
owernship, query
Persons admin, ...) results
{contact, auth-info) Hlst@
— 9(/@
=
S S
e a %s d
=g B E -
2 g 3 g
£ > Link Planning
T oz B
g1z 8| |7 Neighbour Proposals
2 S Improvement Hints
o o z
[
3 ﬁ =

control
download

image

&

£
o

AN %
S
S AL o\
2 & &,
€/ 2
W
]

Dashboard

NER

: Main User Interface query =
. 1 results Collector History
1 Create Persons oy T
" 25 (]
Firmware: | con®] | Update Infos 3 :

Sh f d Firmware 5 DLSRd “M.Antenna
autoupdate ow status of nodes S lana
install Show ‘Attention needed' I

- Bandwith
configupdate - default route
| Statistics
Figure 2: An overview of the overall architecture of the NodeDB
v w X ¥
FFM.Device FFM.Node PAP.Person _made_by FFM.Device
left e
—0..1 -
Ll
B
E — v
2|, | -uses_ FFM.Net_Device PAP.Subject PAP.Company FFM.Net_Device FFM._Net
—S _Type _Credentials_

T LT ! g 1%
FFM.Wireless . _uses_ FFM.Wireless FFM.Net FFM.Wired in_
_Channel nght: :\eft _Interface s _Interface _Interface

It

) °la

b th
FFM.Wireless FFM.Net_Link FFM.IP_Network
_Standard
FFM.IP4 FFM.IP6
_Network

_Network

f]
‘% =

Figure 3: Object Model of Common Node Database

3.2. Node Database

During the last reporting period, the object model (see Figure 3) of the node database [FFM] was
updated to reflect the necessary enhancements for IP address reservation and some other
features (as described above). It can be seen from the model that IP addresses (both IP version 4
and 6 are supported) can be assigned to network interfaces. On top of this model, address
reservation is implemented. There are quite some differences between different community
networks when it comes to address reservation: some use RFC 1918 private IP space [PrivIP],
others public IP space, others assign subnetworks to nodes. In other words, there is no clear
standard, thus the common NodeDB has to support multiple variants which increases the
complexity of the implementation and the design.

3.3. Common API

Ultimately, we would like to have other community networks interact via a standard common API.
An application could be written for Funkfeuer and used with the (for example) Freifunk NodeDB.
This standardization step is our goal and we made some progress towards this in year 2.

For accessing the common node database an application programming interface (API) was
improved compared to the last report.

The API, which uses a Representational State Transfer?> APl (REST API) has been extended to
support IP address reservation and will serve as a basis for defining a common API.

Other APl improvements implemented:
* Support for polymorphic attributes®.
* Support for accessing the cooked values of attributes via the REST API.

* Support for accessing meta information about entities, i.e., date/time and user of creation
and last change.

* Add response header with link to documentation of resource.
* Support for accessing the links of an object via the REST AP1%.
¢ Implemented a Python module to ease access to the REST API®.

* Support for authorization (see 3.5) with REST authentication tokens.

3.4. Dashboard

Implementation of a user-dashboard started. The dashboard serves both as a general web-app for
interactions of end-users with the NodeDB as well as a reference implementation, showcasing how
the NodeDB can be used for rich single-page web applications.

Zhttp://en.wikipedia.org/wiki/Representational_state_transfer

BSupport for polymorphic attributes, Christian Tanzer April 2013: http://confine.funkfeuer.at/2013/04/support-for-polymorphic-
attributes/

*RESTful APl improvement, Christian Tanzer May 2013: http://confine.funkfeuer.at/2013/05/restful-api-improvement/

BREST Client, 2013: https://github.com/Tapyr/tapyr/blob/master/_GTW/_RST/_MOM)/Client.py

€ a) m
T
The Dashboard is built on top of the backbone.js library — a single-page application MVC

framework written in JavaScript — and bootstrap — a basic CSS library popularized by Twitter. It
thus demonstrates how the NodeDB can be integrated with state-of-the art web technologies.

Several challenges in querying the NodeDB became apparent while developing the dashboard —
this helped to improve the use and test cases for the NodeDB and triggered a change of the SQL
interfacing back-end to allow certain queries.

The dashboard is in a functional prototype stage right now and is expected to be finished once the
NodeDB is ready to be used and contains all authentication and security features needed.

3.5. Authorization

In addition to password-based authentication, two new authentication mechanisms were
implemented.

Most browsers today support a method of secure — if not very user-friendly — generation of
client certificates where the secret key stays with the browser. Since no Python implementation for
using this mechanism on the server-side (although it exists since Netscape times) was available we
wrote a library to support the server-side of using client certificates, the library pyspkac [pyspkac].

For use by clients of the Common API (see 3.3) the framework was extended to support REST
authentication tokens, aka RAT. To get such a token, a client sends a post-request with username
and password to the RAT resource and gets back an authentication token that can be used for a
limited time to authenticate subsequent requests.

The dashboard currently uses REST authentication tokens for authentication.

3.6. Network Monitoring and Statistics

Note: since this is also part of WP3, we will only briefly mention it here and describe this later in
the deliverables for WP3. Please note that the monitoring described here refers to the networking
infrastructure and not to testbed nodes, which is described in section 4.

We started to implement a statistics server, collecting statistics from the Funkfeuer network. The
collected statistics (reachability, routing and topology of the mesh network) help researchers to
better understand real-life mesh-networks. A graph of the current Funkfeuer topology can be seen
in Figure 4. More topology visualization is available in our blog®® and software for an interactive
version is available [topo-github].

The implementation of the statistics server triggered a privacy and anonymization discussion in the
Funkfeuer network that prompted us to work on IP address anonymization. One promising
approach was the Crypto-PAn [cryptopan] algorithm.

To integrate the Crypto-PAn algorithm in our software we created a Python module: pycryptopan
[pycryptopan]. The module is published with the Python package repository and available for
Python versions 2 and 3. We are especially proud of the fact that after publishing the source code
for pycryptopan on GitHub the author, Michael Bauer, got immediately patches and feedback from
completely independent and unrelated developers, meaning that this module is already used by a
much wider community than just CONFINE.

*®Hackathon blog post, 2013: https://confine.funkfeuer.at/2013/07/hackathon/

. :"‘l-
- L " +. & A
.] o - - T -
. ‘l.-. = F' = L
L] L LI .
Ir : ",.'"" ,' e e L3 5
¥ L] Fu [] . -
5 - W = - s
-l-‘l.,- lx ¢ g : =N
& i # ™
= ¥ Lo] ™
-
»; - .r'-'|- ¥ & oW & -lII
el T, %
[e o PR—— &
o = Y | = -
& & o =
. L] B s w
T S, . " e
[e .‘}.1- | ..- - Ll
* -
w T a o R
-
" b = w ik
i 5 i . P
23 £ L] 1 "
& w w .
. Fad 4

Figure 4: Funkfeuer topology?”

The monitoring via smokeping? is making nice progress. We are getting access to VMs on different
community networks in order to create a looking-glass-like ping monitoring solution. Alarms work
nicely in the most recent version of smokeping.

3.7. Conversion and Import

As mentioned above, for populating the node database, importers have been written to import
data from other sources into the node database.

To eventually switch over from the current Funkfeuer Vienna Node database "Redeemer", an
import for redeemer has been written. It converts user data, node and device information as well
as IP address assignments. Since the current Redeemer database doesn't contain enough
information for the new database — notably information about wireless interface configuration is
missing and it is unclear which interfaces that have an IP address assigned belong to which device
— we also rely on OLSR data and data retrieved by a spider (see 3.9) to complement the data in
the redeemer database.

For data of Funkfeuer Graz, an importer was started which has not been finished. It uses some of
the same libraries for reading SQL dumps and contributed to our lessons learned from importers
(see 3.8).

To make the Redeemer data publicly available for research purposes an anonymization option was
added to not import the personal information during database import.

In addition to the Vienna Redeemer database, an importer for a subset of the node data of
Guifi.net was written. AMWN importing still needs to be done as of today.

Both the anonymized data from Funkfeuer Vienna and a subset of Guifi.net data were made
available for research purposes®.

“Visualizing OLSRD topography using d3 blog post, 2013: https://confine.funkfeuer.at/2013/07/visualizing-olsr-topology-using-d3/
“http://tunnel.confine.funkfeuer.at/cgi-bin/smokeping.cgi?target=CONFINE_servers

®ff-nodedb.funkfeuer.at and guifi-nodedb.funkfeuer.at online, Aug 2013: http://confine.funkfeuer.at/2013/08/ff-nodedb-
funkfeuer-at-and-guifi-nodedb-funkfeuer-at-online-2/

« I

* Ea
To facilitate updates, an account migration feature was implemented® that can port the database
accounts to the new database when new data is imported.

3.8. Lessons learned from importers

For importing from another database, we used the SQL dump of that database. This resulted in a
library, part of [rsclib], that can read SQL dumps (from both PostgreSQL and mySQL) and offer the
data via a Python API.

When writing importers — for both CNML data from Guifi.net? as well as SQL database dumps for
Funkfeuer Vienna and Graz — we encountered problems with the data offered. In particular, non-
sanitized data (like invalid MAC Addresses) and problems with character encodings.

The problems with character encodings were due to the long usage period of the data in question
which had encountered changes of character set (from Latinl- to Unicode-based encodings like
UTF-8). Some data was double-encoded. This resulted in a module for the SQL dump reader in
[rsclib] to sanitize the encoding problems.

Another problem when running our importers was the time it took to complete the data import.
This was traced to large transactions of the underlying SQL database. Some commit statements at
appropriate places in the code improved performance drastically. So an advice when writing
converters or importers boils down to:

Don't create all objects in a single transaction; commit every now and then.*

3.9. Spider

Originally intended for augmenting the data used by the importer (see 3.7), a spider was written
that extracts the following information from the web-interfaces of the nodes in the Funkfeuer
network in Vienna:

* Version and type of software used

* WLAN configuration (if available): channel, signal, ESSID, BSSID, etc
* Network interfaces and configuration information

* |IP Address information

The spider can be used on any network that uses OLSR for routing — currently the spider relies on
the OLSR topology data for finding out from which IP addresses to retrieve data.

Funkfeuer currently uses a mix of different hardware and software components. The spider can
currently handle the following software on devices:

* Freifunk Firmware

* Backfire Vienna

* OpenWRT Firmware

* OLSR "Textinfo" Plugin output

®Account migration, Christian Tanzer May 2013: http://confine.funkfeuer.at/2013/05/account-migration/
3 Guifi.net CNML Wiki, retrieved 2013-09-09: http://en.wiki.guifi.net/wiki/CNML
2Converter performance, Christian Tanzer Aug 2013: http://confine.funkfeuer.at/2013/08/converter-performance/

« I
o 5]
The type of firmware running on the device is auto-detected. When testing, the software auto-

detected many nodes from the Funkfeuer Graz network (which uses a different set of devices from
Funkfeuer Vienna).

We currently spider the network once a day and keep the data retrieved for statistics on network
parameters. Some of the data will be made available via our Statistics Server, (see 3.6).

3.10. Improvements to the relational database back-end

The NodeDB uses the Tapyr [Tapyr] framework to access relational databases. Tapyr in turn uses
SQLAIchemy?® for that task.

During the development of the common node database, we identified some weaknesses of Tapyr's
SQLAIchemy wrapper. We implemented the improvements:

* Use of database-specific data types for database columns.

Tapyr now supports the use of RDBM-specific data-types. For managing IP addresses with
properties like network ask and contains relationship we had to extend the Tapyr
framework to support IP network operations. One of the back-end databases (PostgreSQL)
natively supports IP address objects while other databases don't. The framework can now
use the native IP address type if supported by the database and emulate the behavior for
the other back-ends.

The back-ends for both PostgreSQL and SQLite support the same queries, with PostgreSQL
doing most of the work for Tapyr, while the SQLite back-end implements IP address
comparison with complex SQL expressions over the synthetic columns.

* Transitive queries of attributes of joined tables.

Tapyr now supports the definition of query attributes that resolve to a SQL join of multiple
tables. For the common node database, the most important use for transitive queries is to
find all objects of a certain type that belong to a specific node. For instance, to find all
antennas belonging to some node a client of the REST APl can now use a get request like
this:

https://guifi-nodedb.funkfeuer.at/api/FFM-Antenna?AQ=belongs_to_node,EQ,374

which returns all Antenna instances linked to Wireless_Interfaces connected to
Net_Devices connected to the Node specified. Because FFM.Antenna is not directly
connected to FFM.Node, multiple joins are necessary to find the node in question, resulting
in a select statement looking like:

SELECT

FROM mom_id_entity
JOIN ffm_antenna ON mom_id_entity.pid = ffm_antenna.pid
JOIN ffm_wireless_interface_uses_antenna
AS ffm_wireless_interface_uses_antenna_1

ON ffm_wireless_interface_uses_antenna_1."right" = ffm_antenna.pid

Bhttp://www.sglalchemy.org/

JOIN ffm_wireless_interface AS ffm_wireless_interface_1

ON ffm_wireless_interface_1.pid

= ffm_wireless_interface_uses_antenna_1."left"

JOIN ffm_net_interface AS ffm_net_interface_1

ON ffm_net_interface_1.pid = ffm_wireless_interface_1.pid
JOIN ffm_net_device AS ffm_net_device 1

ON ffm_net_device_1.pid = ffm_net_interface_1."left"

WHERE ffm_net_device_1.node = 374

To query Antenna instances belonging to a specific Person, the client would send a get-
request like (domain elided):

/api/FFM-Antenna?AQ=belongs_to_node.owner,EQ,104
Polymorphic queries computed by the database itself.

Tapyr supports polymorphic attributes, i.e., attributes that refer to objects of a polymorphic
type. By default, there is no database table for a partial type; a polymorphic attribute
referring to such a type is a foreign key to one of the set of tables corresponding to the non-
partial derived types. Queries for polymorphic types are now completely resolved by the
relational database (previously, the results of several database queries needed to be
combined in Python which was quite inefficient if sorting and limiting was involved).

4. Monitoring and self-management

4.1. Motivation

The monitoring system®® is designed specifically to monitor activity on research devices of the
Community-Lab testbed. Monitoring the testbed presents specific challenges in the form of large
scale of infrequently-used data. The monitoring system should support active measurements that
provide insight into the functioning of nodes without revealing too much information of what is
running on it, gather slice and sliver specific information and should be flexible enough to add new
metrics without hampering the functionality. Monitoring logs should never lose precision and
should support passively measured data such as last-time ssh succeeded, number of ports in use,
resource hogs (which experiments are using the most CPU, memory, bandwidth and ports).

A general purpose monitoring system does not meet these special purpose requirements of
Community-Lab and are meant for different workloads and properties. Slice-specific and sliver-
specific information (LXC monitoring) cannot be obtained directly by any of the existing
monitoring systems. Nagios, Zenoss, ntop, Ganglia and Cacti use the RRD tool for storing data.
RRD is great for storing time series data and aggregating information, but it is quite inflexible. It
becomes necessary to compromise between flexibility and efficiency.

Adding new metrics would require updating the database file. Once an RRD is created, it is
possible to change existing values and add new data sources, it is not possible to add or remove
metrics and change their properties. If modelling of data is not considered carefully, it can lead to a
number of updates as and when new slivers are created in a node. Slice-specific data implies data
from different nodes and would result in a dynamic list of RRD which in turn would need
additional scripts to fetch, aggregate and display data. For instance in Comon (monitoring system
of PlanetLab [PlanetLab]), the data model is carefully chosen, but still old database files are
deleted when the format changes. In many cases (depending on configuration) if an update is
made to an RRD series but is not followed up by another update soon, the original update will be
lost. This makes it less suitable for recording data such as operational metrics. There is no way to
back-fill data in an RRD series and depending on the data model, a single RRD receiving data from
multiple sources can be affected by this. Given the large scale varying resource consumption and
the dynamic nature of Community-Lab, flexibility is a key requirement. Apart from that, sliver-
centric information is not easily integrated into node-centric data provided by off-the-shelf
monitoring systems. This kind of data gathering is an important motivation for developing a
separate monitoring system to meet the specific needs of Community-Lab.

*https://github.com/navaneethrameshan/

oY

*;‘{' D2.3 System enhancements (Year 2) 8
4.2. Design

At a high level, the monitoring system consists of a monitoring daemon running on each research
device, a centralized data gathering and processing infrastructure and a display facility. The
daemon running on the research device provides node-centric data including sliver specific
information, and it monitors periodically (e.g. every sixty seconds). It accepts HTTP requests and
responds with HTTP responses, to allow them to be accessed from web browsers in addition to
being used with automated systems. The response is provided in JSON format to allow researchers
to query and use monitored data. The daemon stores the monitored information in a file locally
until the data gathering service has seen it. This ensures that no monitored information is lost
during a network partition and helps researchers diagnose any problem that may have happened
during this period.

While the daemons operate on research devices, the data gathering and processing operates on a
properly-provisioned machine. Data is collected from the daemons using a pull model and is
fetched every 5 minutes. All fetches are performed in parallel to reduce latency. Slice centric
information is generated by analysing the node centric logs and is stored in the database.
Additionally information is aggregated and summaries are provided at a granularity necessary to
make meaningful inference from the data. Precision of the monitored information is never lost and
it supports data offloading which is then provided as an open data-set.

Confine Research Device Status

Visualize Node metrics over time

Last Secn Disk Numberof | CPU Load Total Memary Network Data | Network Data
(GMT) R Size CPUs Usage(%) | Avg-lmin | Memory | used(%) Sent/Sec Received/Sec EEs Do e

5 . 8 it min/av/max/mdey = port-80:closed, port-806:closed,
[£f5:5351: 145d:60:: B B B 000 -
None faf5:5351:1dfd:60::2] | None None None None None None None None Nong 37.230/27 230/27. 2300000 ms por22:closed,

=)

20130621 . 9 days, rit min‘avg/max/mdey = port-80:closed, port-806:closed,
[£0f5:5351:1dfd:11::2] 0G 2 0B 0B
11:19:39 65333 IELLZ] | 84 2 B o1 206 4 - B 12:02:57.080000 14:509/14.506/14.509/0.000 ms port-22:closed,

2013-08-09 21 days, rit minfavg/max/mdey = port-80:closed, port-806:closed,
17:19:51 (003535 1:101¢:3d::2] | 614.4M 1000 231 247.0M 148 128K K 4:31:44 590000 10.799/10.799/10,799/0.000 ms port-22:closed.

None [f£5:5351:1fd:55:2] | None None None None None None None None None minave/maymdev = 09650963 | port-80:closed, port-806:closed,
Hone Hone Hone 0.9650.000 ms port-22:closed

None [£f5:5351: 1fd:T:2] | None None None None None None None None None Fail port-80:clased, part-806:clased,
port-22:closed,

Figure 5: The list of node status

Confine Research Device Status

Node: [fdf5:5351:1dfd:3d::2], Value: Total CPU usage

Node: [fdf5:5351:1dfd:3d::2]
Zoom "TRFTETTRY Al From To

Thursday, Aug 8, 19:00
value: 24.847272727272724

o
3
g
g
3
3
a
9

3

&

Figure 6: Historical data for a specific parameter for a node
Monitored information is reported via a web interface that supports sorting, and shows graphs of
historical data (see figure 6). The reporting currently covers OS-provided metrics and metrics

Version 1.0 — 15/09/2013 Page 19

;ﬁi D2.3 System enhancements (Year 2) [|

synthesized from other sources on the node. The system reports the following OS-provided
metrics: uptime, CPU utilization, memory utilization, total memory, disk size, disk space available,
1 minute load, network data sent and received. Synthesized data includes last time the monitoring
daemon on the research device was seen, open ports, ping status and slice centric information.
The system maintains only a manageable set of metrics that help the researchers get insight of any
strange behavior in a given node (see figure 5). To facilitate the researchers in selecting nodes to
run their experiments the web interface provides a Treemap view of all the nodes (see figure 7)
based on the historical trend (customizable) of resource usage.

Confine Research Device Status

Start Time:: | None 4| None #| | None #|--—-—---—— End Time:: [None 4| | MNone #| [None #

No. of values to calculate average: [100 ¢| [go |

| Most Recent |

Average CPU Usage Average Memory Usage

[faf5:6351:1dfd:67::2] [fdf5:5351:1dfd:63... [df5:5351:1af... -II..

[1df5:5351:1d1d:56::2]

[fdf5:5351:1dfd:66::2] Wars:5351:A0K:B-2]

e [flf5:5351: el . 553511 dfd:..
[ars:5351:10f0:30:2] ESH BT ; [615:5351 1 did6:2) -
!
H

Figure 7: A Treemap view of the historical data for all nodes

Version 1.0 — 15/09/2013 Page 20

5. Software-defined networking

Working with the CONFINE software collection we encountered the need to allow researchers to
perform L2 experiments. In order to achieve that goal we would need a way to perform L2
topology virtualization and thus present to the researchers not a low level AP| but a set of abstract
and manageable L2 resources. In spite of the wide variety of ways to achieve L2 topology
virtualization, the most prominent approach is the one of Software Defined Networking®® (SDN).

Network resource virtualization using SDN offers more benefits than simple resource handling.
The SDN community is working on a complete networking solution where besides resource
virtualization, users will be provided with a configuration and management plane. For these
reasons we decided to extend the CONFINE testbed with a platform for L2 experiments® using the
OpenFlow SDN protocol [OpenFlow].

The implementation consists of two main components:

1. A proxy for the POX OpenFlow controller®” which is located in the research device and plays
the role of a local OpenFlow proxy.

2. A software component that integrates POX with Django*® in order to provide a Ul through
the CONFINE testbed server web Ul.

The L2 SDN experiment platform is not yet fully integrated with the CONFINE testbed but it will be
available in the near future. This effort is also described in the paper “Software Defined
Networking for Community Network Testbeds” published in the international workshop on
Community Networks and Bottom-up-Broadband, part of the WiMob 2013 conference.

$http://en.wikipedia.org/wiki/Software-defined_networking
*®*http://wiki.confine-project.eu/soft:sdn
http://www.noxrepo.org/pox/about-pox/
®https://www.djangoproject.com/

6. cOntrol and Management Framework (OMF)

By integrating the cOntrol and Management Framework (OMF) (5.4) [OMF] in CONFINE
testbeds®, experiments on the CONFINE testbed can be described in one single experiment file.
From the moment the researchers feed the experiment file to the OMF Experiment Controller
(OEC), the OMF integration takes care of everything. From a researcher's point of view, no
interaction with the CONFINE testbed is required anymore: this allows researchers to focus on the
experiment rather than on how to execute their experiment on the CONFINE testbed.

By using the CONFINE REST API, the OMF Aggregate Manager (OAM) communicates with the
CONFINE server to check for available resources and to make necessary resource allocations (i.e.
sliver allocation on the available nodes). When the experiment is finished, results can be fetched
by using the OML measurement library — by default — provided by OMF.

*®http://researchinternship.blogspot.com.es/

7. DLEP

The CONFINE Test-Infrastructure is mostly about testing in Community Mesh Networks, which use
wireless links to connect the nodes of the network with each other. This means that quite a few
experiments will need IP and link layer information about the traffic on the wireless interfaces,
including link layer metadata like signal strength or transmission speed.

In addition CONFINE research nodes are built to be integrated into existing networks, which are
used by the Community participants for their own communication, both local within the Mesh and
with the Internet.

Because of this, it is not feasible to give researchers direct access to Wi-Fi hardware and its
configuration. The CONFINE research node must make sure that experiments stay within the
defined restrictions and conditions agreed on with the local Community to preserve the privacy of
the network participants and prevent experiments from disrupting the Community Mesh itself.

CONFINE uses a prototype of the Dynamic Link Exchange Protocol (DLEP) of the IETF Manet
Group to deliver link layer data from the operating system to research nodes while separating
them from the real control interfaces.

7.1. DLEP development

DLEP is still in active development in the IETF Manet Group, the protocol draft has yet to stabilize
and find consensus about the content of the draft. Most of the CONFINE work on DLEP has been
done by participating in the Manet Group to make sure that the protocol will be flexible enough
for usage both with modern Software Defined Radios and with the low-cost hardware used by
most Community Mesh Networks.

The IETF meeting in Berlin ended with the creation of a small DLEP research team, which is
collecting a larger set of link layer metrics from several people including CONFINE members.

There has also been an announcement of a 5" revision of the DLEP draft, which should be stable
enough that CONFINE can start working on a standard-compliant implementation of DLEP.

7.2. CONFINE DLEP implementation

The CONFINE DLEP implementation is made from a group of plugins that are attached to a
lightweight link layer database. This plugin design allows to adapt the implementation to different
use-cases without modifying the code base.

The DLEP implementation has several plugins that gather link layer data and enter it into the
database, either by querying the operating system about data of a local network interface (Wi-Fi,
Ethernet) or by importing static data from a configuration file.

The core of the DLEP protocol itself is a pair of plugins (DLEP service and DLEP client) which can
mirror the content of this database over an IP network between two devices. This can allow a
research node to gather and process link layer data of hardware that is part of a different device,
e.g. the attached Community Mesh node or an external radio connected by Ethernet. The client
plugin also has the capability to automatically detect the presence of service devices on the local
network, which should allow plug-and-play extension of Community Mesh Nodes with external
radio devices in the future.

»

. .‘» [|

The information gathered by the plugins, directly from the local hardware or over DLEP from
remote hardware can then be either processed on the application itself (e.g. for a routing metric)
or can be supplied to other processes by different interfaces. The DLEP implementation has a
plugin to export the content of the link layer database in text or JSON form for this.

8. Conclusions

This document presents an update of the architecture, design and development of the CONFINE
testbed software system done during the second year of the project. It builds on the work
reported in D2.1 during the first year of the project.

The improvements and extensions affect diverse aspects:

* The testbed controller: a ticket system for tracking issues with the testbed, monitoring of
network connectivity, execution of operations in multiple nodes at once, improvements in
the REST API for resource list filtering and updates in its architecture, structure and
modularization, compliance with standards

* Design and development of a Common NodeDB for planning common, shared resources in
a community network. The system can also import data from the current FunkFeuer
database and also from the Guifi CNML data.

* Design and development of a new testbed monitoring system that collects node, sliver,
slice and experiment metrics and accumulates a metrics history. This allows to assess
individual and aggregated resource usage to select resources for experiments, analyse and
detect anomalies in the operation of the testbed.

* Design and prototyping of a network (L2) topology virtualization prototype for experiments
and thus present to the researchers a set of abstract and manageable L2 resources.

* Further steps in the integration of OMF with the testbed controller.

* Extensions and reimplementation of part of the node software following the controller API,
with tools for monitoring and upgrading nodes.

* Evolution of the DLEP implementation for the testbed, providing researchers access to WiFi
hardware and its configuration, according to the IETF Manet WG.

* Evolution of the virtual testbed (VCT) with containers that can run native node images,
which provides a more faithful environment for testing and quality assurance.

This set of software developments with new and redesigned features can be found in the project
repository at http://redmine.confine-project.eu. This new software combined with the continuous
effort of integration, testing and maintenance has contributed to increase the stability, usability
and functionality of the Community-Lab and the virtual (VCT) testbeds for research experiments.

http://redmine.confine-project.eu/

9. References

[cryptopan] Crypto-PAn Cryptography-based Prefix-preserving Anonymization:
http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/

[FEDERICA] FEDERICA, Federated E-infrastructure Dedicated to European Researchers Innovating in
Computing network Architectures: http://www.fp7-federica.eu/

[FFM] Common Node Database, 2012-13: https://github.com/FFM/FFM

[OMF] The cOntrol and Management Framework: http://mytestbed.net/

[OpenFlow] OpenFlow: http://www.openflow.org/

[OpenWrt] OpenWrt: https://openwrt.org/

[PlanetLab] PlanetLab, an open platform for developing, deploying, and accessing planetary-scale services:
https://www.planet-lab.org/

[PrivIP] “Address Allocation for Private Internets”, IETF RFC 1918: https://www.ietf.org/rfc/rfc1918.txt

[pycryptopan] A python implementation of Crypto-PAn a IP anonymization jalgorithm:
https://pypi.python.org/pypi/pycryptopan

[pyspkac] Support for Netscape / HTML5 SPKAC client certificate request:
https://pypi.python.org/pypi/pyspkac

[rsclib] rsclib: Utility Routines, Ralf Schlatterbeck 2004-13; rsclib: Utility Routines:
http://rsclib.sourceforge.net/

[Tapyr] Tapyr Framework, 2008-13: https://github.com/Tapyr/tapyr

[topo-github] Visualizing OLSRD topography using d3 Software distribution, 2013:
https://github.com/FFM/d3topo

https://www.ietf.org/rfc/rfc1918.txt
https://www.planet-lab.org/
https://openwrt.org/
http://www.openflow.org/
http://mytestbed.net/
http://www.fp7-federica.eu/

The CONFINE project
September 2013
This document is licensed under the following license:
CC Attribution-Share Alike 3.0 Unported
<http://creativecommons.org/licenses/by-sa/3.0/>

CONFINE-201309-D2.3-1.0

__COOPERATION

	1. Introduction
	1.1. Contents of the deliverable
	1.2. Relationship to other project deliverables

	2. Core testbed components
	2.1. REST API
	2.2. Testbed controller
	2.2.1. REST API Resource List Filtering

	2.3. Node software
	2.4. Virtual CONFINE Testbed (VCT) and VCT container
	2.5. Testing the system

	3. Common NodeDB (user interface/admin interface)
	3.1. Overview
	3.2. Node Database
	3.3. Common API
	3.4. Dashboard
	3.5. Authorization
	3.6. Network Monitoring and Statistics
	3.7. Conversion and Import
	3.8. Lessons learned from importers
	3.9. Spider
	3.10. Improvements to the relational database back-end

	4. Monitoring and self-management
	4.1. Motivation
	4.2. Design

	5. Software-defined networking
	6. cOntrol and Management Framework (OMF)
	7. DLEP
	7.1. DLEP development
	7.2. CONFINE DLEP implementation

	8. Conclusions
	9. References

